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ABSTRACT. Let R be a G-graded ring, M a G-graded X-quasiprojective R-module, and
E = ENDR(M)°P its graded ring of endomorphisms. For any subgroup H of G, we prove
that certain full subcategories of G/H -graded R-modules associated with M are equivalent
to a quotient category of G/H -graded E-modules determined by the idempotent G-graded
ideal of E consisting of endomorphisms which factor through a finitely generated submodule
of M . Properties and applications of these equivalences are also examined.

INTRODUCTION

Let R be a ring, M be a left R-module and S = Endg(M)°P. Assuming that M is
Y -quasiprojective, J.L. Garcia Herndndez and J.L.. Gémez Pardo proved in [7, Theorem
1.3] that the functors Hompg(M) and M ®g — induce an equivalence between the full
subcategory of M -presented R-module and a certain subcategory of S-Mod, which coin-
cide with S-Mod if and only if M is finitely generated. Two other realization theorems
as subcategories of R-Mod of the same quotient category of S-Mod were given by the
same authors, and the equivalences were generalized in [8] in the context of Grothendieck
categories.

Now assume that R =D, 5 Ry and M =P, M, are graded by a group G. Then
S has a subring £ = END(M)°P which is also G-graded, and E = S if G is finite or
M is finitely generated. If M is finitely generated, it was shown in [11] that the above
equivalence preserves the modules graded by (transitive) G-sets, and it is compatible
whith the grade forgetting functor. This kind of graded equivalences has appeared in
two contexts. One of them is the Clifford theory of graded rings, as developed especially
by E. Dade in [5], where M is assumed to be a simple object of the category R-Gr
of G-graded R-modules. The other is when M is taken to be the canonical generator
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@D, cc R(g) of R-Gr. Several authors have studied the case of infinite G, and the results
of T. Albu and C. Nastasescu [3] are among our main starting points here.

The aim of the present paper is to establish equivalences between categories of modules
graded by G-sets, which cover and unify the above results. The main difficulty is that
we want to have graded modules in both sides of the equivalence, so we have to deal
with the graded ring F instead of S, and the functor Homp(M, —) must be replaced as
well. The paper is organized as follows. In Section 1 we provide the necessary background
material on torsion theory and on graded rings and modules. In Section 2 we develop to
some extent a theory of rigid closed and localizing subcategories of modules graded by
G-sets, and their Gabriel topology counterpart. We are concerned with the behaviour
of the grade forgetting functor and its right adjoint with respect to these subcategories.
Such a study was initiated in [10] and [16] in the case of G-graded modules. The main
results of the paper is Theorem 3.9 and Corollary 3.11, where, for any subgroup H of
G, we prove the existence of equivalences between certain subcategories of G/H -graded
R-modules associated to the G-graded X -quasiprojective module M, and a subcategory
of G/H-graded E-modules; we investigate the compatibility of these equivalences with
the above mentioned grade forgetting functor.

Note that if £ # S, Theorem 3.9 does not immediately give the equivalences of
Garcia Herndndez and Gémez Pardo. The precise relationship with their results is pre-
sented in Theorem 3.12. In the last section we discuss applications of our results to various
particular cases.

Let us briefly present our general assumptions and notations. Rings are associative
with identity, and modules are left, unless otherwise stated. A module will often be
regarded as a right module over its endomorphism ring, so if f and g are two composable
homomorphisms, we shall write fg =go f.

If A is a ring, we denote by A-Mod the category of A-modules, and by L(A) the
lattice of left ideals of A. If I € L(A) and a € A, let (I :a) ={b€ A|ba € I}, and if
M is a A-module and m € M, then ¢4(m) = {a € A | am = 0} is the left annihilator of
m.

fR=6 gec IYg is aring graded by a group G, and H is asubgroup of G, we denote by
(G/H, R)-Gr the category of R-modules graded by the G-set G/H and grade-preserving
R-homomorphisms. This is a Grothendieck category, and we refer the reader to [14] for
its basic properties. In particular, (G/1, R)-Gr is the category R-Gr of G-graded R-
modules, and (G/G, R)-Gr = R-Mod. If N =€P, g,y No is an object of (G/H, R)-Gr,
and X is a subset of G/H, we denote Nx = ®x€ x V.. We shall also use the notation
[G/H] (respectively [H\G]) for a system of representatives of the left (respectively right)
cosets of H in G.

We refer to [19] for general facts on torsion theory, and to [17] for the theory of group
graded rings. All the other notation used in the paper will be introduced or recalled in
Sections 1 and 2.
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1. PRELIMINARIES

1.1. Torsion theory. Let A be a Grothendieck category. A class 7 of objects of A
is called a pretorsion class if it is closed under quotients and direct sums. We denote by
ta: A — A the preradical associated to 7, so for every object M of A, t4(M) is the
largest subobject of M belonging to 7. A class 7 (respectively F) is called torsion
(respectively torsionfree) class if it is closed under quotients, extensions and direct sums
(respectively subobjects, extensions and products). A class which is both torsion and
torsionfree is said to be a TTF-class. The torsion theory (7,F) is hereditary if T is
closed under subobjects too. Recall that M € 7 if and only if t4(M) =M and M € F
if and only if t 4(M) = 0.

1.2. Localizing subcategories and Gabriel’s theorem. The full subcategory C of A
is called closed subcategory (or hereditary pretorsion class) if it closed under subobjects,
quotients and direct sums; if this is the case C is a Grothendieck category too. C is
a localizing subcategory if in addition it it closed under extensions. If C is a localizing
subcategory of A then one may construct the quotient category A/C with the canonical
functors:
C

which satisfy the following properties:

e ac is exact and C = Kerag;

e ic is a full and faithful right adjoint of ac;

e The natural transformation ®: ac oic — 1 4/¢ is an isomorphism.

Consider the natural transformation ¥: 14 — ic o ac. Then for any object M of A
the kernel and the cokernel of W,; are C-torsion (belong to C), and M is called C-closed
if W,s is an isomorphism. Recall that M is C-closed if and only if it is C-torsionfree
and C-injective (that is, for each short exact sequence 0 — N’ -~ N — Cokeru — 0
with Cokeru € C the induced homomorphism u*: Homyu (N, M) — Hom4(N', M) is
surjective).

Moreover, the quotient category A/C can be identified with the full subcategory of A
consisting of all C-closed objects, which is again a Grothendieck category.

Conversely, a theorem of Gabriel states that if a: A — A" and i: A’ — A are functors
between Grothendieck categories such that a is an exact left adjoint of i and the associated
natural transformation ®: aoi — 14 is an isomorphism, then Kera is a localizing

subcategory of A and a induces an equivalence between 4/ Kera and A’.

1.3. Linear and Gabriel topologies. If A = A-Mod for a ring A, then the closed
(respectively localizing) subcategories of A correspond to the left linear (respectively
Gabriel) topologies G of A. Recall that a filter G of left ideals of A is a left linear
topology if I € G and a € A implies (I : a) € G and is a left Gabriel topology if, in
addition, for each I € L(A) for that there is an I’ € G with (I : a) € G for all a € I
we have I € G. The correspondence is given by C — Ge = {I €4 A | A/I € C} and
G Cg={X € A-Mod | £4(z) € G for all z € X}. In this case we shall write G-torsion
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(free), G-injective and G-closed instead of C-torsion (free), C-injective and C-closed, and
(A,G)-Mod denotes the full subcategory of A-Mod consisting of G-closed modules.

1.4. Pure ideals. The following interesting situation was discussed in [2]. Let J be an
two-sided ideal and assume that J, is pure (that is, for each M € A-Mod the canonical
morphism J ®4 M — JM is an monomorphism) or, equivalently, A/J is flat as right
A-module. It follows that J is an idempotent ideal. Consider the full subcategories of
A-Mod:

J={MeAMod|JM =M},  C={Mec AMod|JM =0}

and the functors

J === A-Mod === A/J-Mod

where @*(M) = A/J®a M = M/JM, ¢, is the scalar restriction, i(M) = Homy(J, M)
and a(M) =J ®a M = JM . Thus we have:

a) J is a localizing subcategory and C is a TTF-class;

b) ¢* and ¢, induce equivalences A-Mod/J = A/J-Mod = C = Kera;

c) a is the right adjoint of the inclusion functor j: J — A-Mod and a a left adjoint
of i;

d) the natural transformation ®: aoi — 17 is an isomorphism, hence a and i induce
an equivalence A-Mod/C = J.

As a particular case, let J = >, _\ pxA where {px | A € A} is a non-empty set of
orthogonal idempotents of A. Then J is a pure ideal and assume that J is a two-sided
ideal, that is, Y ., Apx € J. (Note that if in addition ) ,_, Apx = J, then J is a ring
with enough idempotents.) Then J is isomorphic to category J-Mod of unital J-modules
(that is JN = N).

1.5. Subcategories associated to an object. Return to our general situation, and fix
an object M of A. Let Gen[M] be the full subcategory of A consists of M -generated
objects and o [M] the full subcategory consisting of M -subgenerated objects (subobjects
of objects of Gen[M]), so o[M] is the smallest closed subcategory of A containing M . If
N € A let Ny = Trp(N) be the largest M -generated subobject of N. If M generates
o[M], that is, o[M] = Gen[M], then M is called self-generator.

Let 7 be the smallest localizing subcategory of o[M] containing the objects N/Ny,
with N € o[M]. Denote t: o[M] — o[M] the corresponding radical, N = N/t(N)
and F the corresponding torsion-free class. The objects of F are called M -faithful or
M -distinguished, and it is easy to see that N € o[M] is M -faithful if and only if for
every non-zero morphism g: X — N in o[M] there is a morphism f: M — X such that
go f #0 [8, Proposition 1.2].

We shall consider the following full subcategories of o [M]:

e Pres[M] consisting of all M -presented objects of A;

e C[M] = o[M]/T which can be identified as usual with the full subcategory of 7 -
closed objects;
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e GF[M] consisting of all M -generated, M -faithful objects.

1.6. Y -quasiprojective objects. An object M of A is N -projective if for any exact
sequence N — N’ — 0 the sequence Hom4(M, N) — Hom4(M,N’) — 0 is exact too.
M is called quasiprojective if it is M -projective and M is X -quasiprojective if it is M) -
projective for any set A.

Assume that M is X-quasiprojective. Then the hereditary torsion class 7 of 1.5
consists of objects N € o[M] satisfying Hom4(M,N) = 0, and it is actually a TTF-
class. The corresponding torsion class is {X € o[M] | Hom(X,N) =0 for all N € T},
which coincides with Gen[M] since X/Xp € 7 for all X € o[M]. It follows that
X — Xy is the radical associated to the torsion class Gen[M]. For the corresponding
torsionfree class F we have by [7, Proposition 1.2] that N € o[M] is M -faithful if and
only if Hom4(M, X) # 0 for every nonzero subobject X of N, or equivalently, X, # 0
for every nonzero subobject X of N.

Finally, by [6, Proposition 1.2] we have that a(M) is a projective generator of C[M]
and End4(M) = Endepp(a(M)), where a: A — C[M] is the canonical functor.

1.7. Functors between categories of modules graded by G-sets. Let G be a
group, R =P gec g a G-graded ring and fix two subgroups K < H of G. We have two
functors connecting the categories (G/H, R)-Gr and (G/K, R)-Gr.

The grade forgetting functor

U =Ug)y: (G/K, R)-Gr — (G/H, R)-Gr

is defined as follows: for M =D, cq x Mz € (G/K, R)-Gr let

where M = M and M, = D.c, M, forall y € G/H, and U(f) = f for every morphism
f: M — M’ in (G/K, R)-Gr. In most of the cases, when it will be clear from context, we
simply denote U(M) by M.

The functor U has a right adjoint

F =F¢)y: (G/H,R)-Gr — (G/K, R)-Gr

defined as follows: for N =@, cq/ i Ny € (G/H, R)-Gr let

F(N)=N= B Nay.
2€G/K

where ]\N/’x = N,g with multiplication by scalars given by r,n, = rgn, € Ng,, for y =
zH, g =n, € Ny, 7y € Ry, g€ G. If f: N — N’ is morphism in (G/H, R)-Gr, then
f=F(f): N — N’ is given by f(f,) = f(n,) € N; = N, with y = H and f, = n,, as
above.
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The unit ¢ if the adjoint pair (U, F) is defined by
Cu: M — FUM)), Cu(mg) =mg € F(UM)),
for all x € G/H and m, € M, . The counit £ is given by
Env: UF(N)) = N, §(na) = nw € Nan

for all ny, =n, € N, z € G/K and y = xH. Observe that {x is an epimorphism and
(m is a monomorphism for every N € (G/H, R)-Gr and M € (G/K, R)-Gr.

Recall also that if H/K is finite then Fg;g is a left adjoint of Ug?g too.

If x € G/H one can also define the x-th suspension functor
S*: (G/H,R)-Gr — (G/*H, R)-Gr, S*(N) = N(x)

where “H = zHz~!, N(z) = N and N(z), = Ny, for all y € G/*H. Clearly S* is an
equivalence with inverse S* .

The following facts are well-know in the case of R-Gr and R-Mod see [16, Proposition
1.4]:

1.8. Lemma. a) The functors Ug?g and Fg;g are exact and commute with direct

products and direct sums;
b) If K =1 and M € R-Gr then Fg/ 5 (Fg) (M) = @,y M(h) as G-graded
R -module.

Proof. a) It is clear that U and F are exact, commute with direct product and U commute
with direct sums.

Let N = @,., N* be adirect sum in (G/H, R)-Gr and let ¢x: N* — N be the canon-
ical monomorphism. We have the morphism F(qy): F(N*) — F(N) in (G/K, R)-Gr
which induce the morphism

u: EHF(NY) — F(N)
A€EA
Let (7*)xea € @yep F(N?) be a homogeneous element of degree z € G/K where for each
Ae A, a* =n* € N for y € G/H such that = C y. Then u((2*)rer) =7 € F(N),,
with 7 =n € N, where n = (fi*)yea . It is easy to see that u is an isomorphism.

b) Denote U = Ug/ s, F =F¢)py and N = U(M) = @,c(q/u) No» where Ny =
@heH Mg -

Let h € H and m € M(h), = My;,. By the above, m determines an unique element
¢(m) = m belonging to the component Mg, of Ng. It is clear that we have obtained an
isomorphism ¢: @,y M(h) — N of G-graded R-module.

1.9. Graded groups of homomorphisms. Let M = @geG M, € R-Gr, and N =
D.cc/u No € (G/H, R)-Gr. By [11, 2.9], for each € G/H the set

HOMg/g,r(M,N), = {f € Homg(M,N) | f(My) € Ny, forall ge G}
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is an additive subgroup of Hompg(M,N), and by [12, Proposition 3.4] it is a closed
subset of Hompg(M,N) in the finite topology. Note that HOMg /g r(M,N)g =
Hom (g, #, r)-cr(M, N). Moreover the sum

HOMg, g r(M,N) = > HOMg,k r(M,N),
x€G/H

is direct, and by [12, Theorem 3.7], Homg(M, N) is the completion of HOM¢, g, r(M, N)
in the finite topology.

In particular, if M’ € R-Gr, we denote HOMg(M,N) = HOM¢ /1 r(M,N), and let
E = END(M)°? = HOMg(M, M) which is a subring of S = Endg(M)°?. Then E is
a G-graded ring, M becomes a G-graded (R, E)-bimodule and HOMg g r(M,N) a
G/H -graded E-module.

Remark that for £ = gH we have the equalities

HOMg, #1,(M, N), = Hom g o, r)-cr(Ug 3y (M), N(gH))
G _
= Hom(G/H,R)-Gr(UGﬁi(M(g Y, N).
Indeed, the first equality is in [11, 2.9]. For the second, if f € Hompg(M, N) then we have
the logical equivalences:
f(Mp) C Ny forall h € G < f(My4-1) C Ny for all ¢’ € G, (¢ = gh)

= f( @ ng—l) - Ng/H for all g’ eG
keg’H

S f(ED Mg ")) S Nyp forallg € G
keg’H

& [(UG 1 (M(g"))gn) € Ny forallg' € G

& fE€ HOHI(G/H,R)-Gr(Ugﬁq(M(g_l)» N).

1.10. Static modules. The functor

HOM¢/p,r(M,—): (G/H, R)-Gr — (G/H, E)-Gr

is a right adjoint of the functor M ®p —. The unit and the counit of adjunction are
defined by
N X — HOMg g n(M, M ®5 X), 73" (z)(m) =20 m,

P M @p HOMg, i r(M,N) — N, m® f—mf = f(m)

for all X € (G/H,E)-Gr and N € (G/H, R)-Gr.
We shall consider the full subcategories:

Stat?/H[M] = {N e (G/H, R)-Gr | pg/H is an isomorphism}
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Adst®/H[M] = {X € (G/H,E)-Gr | n¥/" is an isomorphism}
of (G/H, R)-Gr and (G/H, E)-Gr respectively.
Similarly the functor
Hom(G/H,R)-Gr(Mu —) : (G/H, R)—GI“ — EH—MOd
is a right adjoint of M ®g, —: Eg-Mod — (G/H, R)-Gr, where Ey = @)y En is a
SUbI'iIlg of End(G/H’R)_Gr(M)Op .
1.11. Lemma. Let M be a G-graded (R, E)-module and I a G -graded E -module. Then
the functors
HOM¢ /g, r(M ®g 1,—), HOMg /g g(I,HOM¢g /g r(M,-)): (G/H, R)-Gr — Ab
are naturally isomorphic.
Proof. Since HOM¢ /g r(M,—) is the right adjoint of M ®g —, for any g € G and
N € (G/H, R)-Gr we have the natural isomorphism
Hom/w,r)-ce(M ®5 I(g~"), N) 2 Hom, m,5)-c:(I(g~"), HOMg i, r(M, N)).
Let [G/H] a set of representatives for the left cosets of H in G. We obtain the natural
isomorphisms:
HOM¢,nr(M @pI,N)= @ Hom@yu n-c(M @pI(g"),N)
g9€[G/H]

@ Hom g /u,p)-c:(I(g™"), HOMg i, r(M, N))
9€[G/H]

> HOMg/u,g(I,HOMgG,m,r(M,N)).

I

1.12. The grade forgetting functor and HOM. Let K < H < G, M € R-Gr and
N € (G/H,R)-Gr. By [12, Corollary 3.8 a)], HOM¢,k r(M,N) is a dense subset of
HOMg,k,r(M, N) in the finite topology, and it is an interesting question whether

HOMg, 11,(M, Ug) 5y (N)) = Ug/ 55 (HOMG . r(M, N)).

The equality clearly holds if the set H/K is finite. If H/K is infinite then by [12, Theorem
4.9] holds for every N € (G/H, R)-Gr if and only if M is small in R-Mod.

1.13. Strongly graded rings. The G-graded ring R is called strongly graded if
RyRy, = Ryp, for all g,h € G. By a theorem of E. Dade, R is strongly graded if and
only if the functors R ®p, —: R1-Mod — R-Gr and (—);: R-Gr — R;-Mod are inverse
equivalences of categories. In this case, the functors R ®g,, —: Rg-Mod — (G/H, R)-Gr
and (—)g: (G/H, R)-Gr — Ry-Mod are also inverse equivalences.

If R is strongly graded, then a two-sided ideal I; of R; is the 1-component of a G-
graded two-sided ideal I of R if and only if Iy is G -invariant, that is Ryl1 R, = I; for
all g € G.

Recall also that if M € R-Gr then E = ENDg (M) is strongly graded if and only if
M is weakly G -invariant, that is, M(g) is a direct summand in R-Gr of a finite direct
sum of copies of M for all g € GG.
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2. RIGID SUBCATEGORIES OF (G/H, R)-Gr AND GRADED GABRIEL TOPOLOGIES

2.1. Let H be a subgroup of G.

A class D C (G/H, R)-Gr will be called rigid if, for every N € D, U(F(N)(g)) € D for
all g € G. (Clearly, here U = Ugﬁ[ and F = Fgﬁq) In the case of R-Gr, this concept
was introduced in [10, Section 2].

If C € R-Gr is a pretorsion class, we denote by C/H the smallest pretorsion class of
(G/H, R)-Gr which contains the objects U(M) for M € C.

If D C (G/H, R)-Gr is a pretorsion free class (that is, it is closed under subobjects
and direct products) we denote by D8" the smallest pretorsion class R-Gr containing the

objects F(N) for N € D.

2.2. Proposition. Let C C R-Gr be a rigid pretorsion class
a) We have the equalities:

CE/H = (N € (G/H,R)-Gr | there is an epimorphism U(M) — N for some M € C}
={N € (G/H,R)-Gr| F(N)eC};

b) If C is a closed (respectively localizing) subcategory then CE/H is also a closed (respec-

tively localizing) subcategory.

Proof. a) Denote by D and D’ the classes defined above. If N € D then there is M € C
and an epimorphism U(M) — N. Then N € C¢/H  since U(M) € C¢/H and C%/H is
closed under epimorphic images.

Conversely, using the fact that U is exact and commute with direct sums, it is easy to
see that D is a pretorsion class, containing U(M), M € C, hence C¢/H C D.

If N € D' then F(N) € C and we have the epimorphism {x: U(F(N)) — N, hence
N eD.

Conversely, if N € D then there is M € C and an epimorphism U(M) — N, and also
an epimorphism F(U(M)) — F(N) in R-Gr. But F(U(M)) = @,y M(h) belongs to
C since C is rigid and closed under direct sums, hence F(N) € C. Finally, C/# is rigid,
since if N € C¢/H then F(N)(g) € C for all g € G, hence U(F(N)(g)) € C&/H

b) follows immediately from a) and the exactness of F.

2.3. Proposition. Let D C (G/H, R)-Gr be a rigid pretorsionfree class.
a) We have the equalities:

D& = {M € R-Gr | there is an monomorphism M — F (M) for some M € D}
={M € R-Gr| U(M) € D};

b) If D is a closed (respectively localizing) subcategory then DE/H is also a closed (re-
spectively localizing) subcategory.

Proof. a) Denote by C and C’ the classes defined above. If M € D then there is N € D
and an monomorphism M — F(N). Then M € D&, since F(N) € D& and D*" is closed
under subobjects.
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Conversely, since F is exact and commute with direct products, it follows easily that
C is a pretorsionfree class, containing F(N), M € D, hence D" C C.

If M € C" then U(M) € D and F(U(M)) € D#". Since the (p: M — F(U(M)) is a
monomorphism, we deduce M € C.

Conversely, if M € C then there is monomorphism M — F(N) for some N € D and
also a monomorphism U(M) — U(F(N)) in (G/H, R)-Gr. But U(U(N)) € D since C
is rigid, hence U(M) € D.

To prove that D8 is rigid, let M € D& and g € GG. There is a monomorphism M —
F(N) for some N € D, hence a monomorphism M (g) — F(N)(g). Let M’ = F(N)(g)
and N’ = U(M’). Then N’ € D since D is rigid and we have the monomorphism
Cvr: M — F(U(M')) = F(N'). Tt follows that we have a monomorphism M (g) — F(N’)
in R-Gr, hence M(g) € D#".

b) follows immediately from a) and the exactness of U.

2.4. Corollary. a) If C is a rigid closed subcategory of R-Gr then (CE/H)8" =C.
b) If D is a rigid closed subcategory of (G/H, R)-Gr then (D&)¢/H =D

2.5. G/H-graded ideals. In order to associate G/H -graded linear topologies to rigid
closed subcategories of (G/H, R)-Gr, we have to see what a G/H -graded ideal of R
should be.

Let N be a G/H-graded R-module and n € Nyg. Then the map Ugﬁ{(R(g_l) —
N r +— rn is a homomorphism of G/H-graded R-module, so its kernel is a G/H -

graded submodule of R(g~!). Observe also that if g,¢’ € G then Ul (R(g™1)) =

G/H
Ugﬁ](R(g/_l)) in (G/H, R)-Gr if and only if Hg = Hg'.

Denote
LEH(R) = (L5 (R) | g € [H\G]}

where EgéH(R) is the lattice of G/H -graded submodules of R(g).

We shall write H C L H(R) if H = {Hp, | g € [H\G]} and Hp, C EICLZJH(R) for all
g € [H\G], similarly I € H means that there is an g € G such that [ € Hyy,.

Let I € E%JH(R) and r € R(¢')orr = Rymg - Then the definition (I : r) = {b €
R | br € I} makes sense if and only if Hg = Hg' and in this case it is clear that

(I:7r)¢€ EEI{TE(R), since (I :r)=Lr(r+1) in R(g)/I.

2.6. Rigidity. Next we show that if we forget the grading, then the sets Eg/gH(R) are
actually equal. More precisely, for each g € G we define a bijection from £fl/ H(R) to
Ef/gH(R), sending I to I9, where I = 9 as subsets of R.

Let T € £ (R) and g € G. Then R/I € (G/H,R)-Gr and I = (z(1 +I). We
consider the G/H -graded R-module

N =UZL,E® L (RIDG) = D Non

where Nog = @ cpy(R/I)ong. Setting o = g~ !, we see that 1 4 I appears as an

element of degree ¢g='H of N, so its left annihlator 79 = I is an element of Eg/gH(R).
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If H C LE/H(R) we say that H is rigid if for each g € G the correspondence I — I9
gives a bijection from Hy to Hpy.

2.7. Graded Gabriel topologies. Let H = {Hp, | g € [H\G]} C LEH(R) with Hp,
nonempty for each g € [H\G].

We say that H is a G/H -graded left linear topology on R if it satisfies the following
conditions:

(1) H is rigid;

(2) Hpy, is a filter for all g € [H\G], that is, I € Hy,, I' € LSH(R(g)), IC T =
I' e Hpyg and I,I' € Hpg = IN1" € Hpuy;

B)IeH, reh(R)=([:r)eH.

If H =1 the above remarks show that our definition is equivalent to the definition of
a G-graded linear topology given in [10, p. 490].

H is called a G/H -graded left Gabriel topology if it satisfies conditions (1), (2), (3) and

(4) If T € £L9H(R) and there is I’ € H such that (I : r) € H for all » € h(I’) then
IeH.

(Note that if T € E%H(R) and (I :r) € H for all r € h(I”) then I' € Hpy.)

2.8. Next we define correspondences between left graded topologies on R and rigid
subcategories of R-Gr.
(2.8.1) If G is a G-graded left linear (Gabriel) topology on R let

GE/H = {J e LEH(R) | thereis I € G such that T C J}
(2.8.2) If D is a rigid closed subcategory of (G/H, R)-Gr let
Hp = {I € LS5 (R) | R(g)/I € D for some g € G}
(2.8.3) If 'H is a G/H -graded left linear topology on R let

Dy ={N € (G/H,R)-Gr | fg(n) € H for all n € h(N)}

G/1

The proof of the next result, where U = U_ TH and F = Fgﬁq is routine.

2.9. Proposition. a) If G is a G-graded left linear (respectively Gabriel) topology on
R then GS/H s the smallest G/H -graded linear (respectively Gabriel) topology on R
containing U(G);

b) The correspondence D +— Hp and H +— Dy are bijection between the rigid closed
(respectively localizing) subcategories of (G/H, R)-Gr and the G/H -graded left linear (re-
spectively Gabriel) topologies on R ;

c) If C is the rigid closed subcategory of R-Gr corresponding to the topology G then
CG/H = DgG/H and HcG/H = GG/H;

2.10. The Gabriel topology determined by an idempotent G-graded ideal. Let
J be a idempotent G-graded two-sided ideal of R and

G={IecL¥R)|JCI)
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Then G is a G-graded Gabriel topology on R and
GO — (1 e LC/H(R) | JCI}.

It is not difficult to verify (see also [19, Example 3, p.200]) That the following assertion
are true for every N € (G/H, R)-Gr:
(2.10.1) N is G¢/H _torsion if and only if JN = 0, or equivalently, J @z N = 0;
(2.10.2) N is GE/H _closed if and only if the canonical morphism N — HOMg, m,r(J, N)

is an isomorphism.

2.11. Let K < H be subgroups of GG. Since Ugﬁ{ = Ug;g Ug;k nd Fgﬁl =
Ugﬁ( ) Fg;g, the arguments of Propositions 2.2 and 2.3 show that we have the pair

of adjoint functors (Ug?g,Fg?g) between C¢/H and C%/K where C is a rigid closed

subcategory of R-Gr. Using the fact that U is a separable functor, we easily deduce:

2.12. Proposition. Let C be a rigid closed subcategory of R-Gr.

a) An object P of CE/K is projective in CE/¥ if and only if U(P) is projective in
CG/H .

b) If a object M of CE/¥ is a generator of C/% then U(M) is a generator of CE/H

2.13. Proposition. Let K < H be subgroups of G, C be a rigid closed subcategory of
R-Gr, M € (G/K,R)-Gr and N € (G/H, R)-Gr.
a) If M is CG/¥ —torsionfree then U(M) is CE/H -torsionfree;

b) If N is CS/H _torsionfree then F(N) is CE/X -torsionfree;

c) If M is CG/X —injective and H/K is finite then U(M) is CE/H -injective;

d) If N is CE/H _injective then F(N) is CE/K -injective;

¢) tayu(Ug) g (M) = UGy (ba (M)
Proof. a) We have that tee/x (M) = M, so U(tea/x (M)) = U(M). But U(tea/x (M))
belongs to C&/ | hence tee x (U(M)) = U(M).

b) Let X € CYK. Then Hom g,k ry.c:(X,F(N)) & Hom@,m ry.c:(U(X),N) =0
since U(X) € C¢/H . Consequently, F(N) is C¢/K -torsion free.

c) and d) are easy consequences of the adjunction and of the fact that U and F
preserves torsion objects.

e) Let G be the G-graded linear topology corresponding to C. Then
GEH = (T e L9H(R) | there is I € G&/X such that I C J},

since we may take I to be a G-graded ideal. Now the argument of [10, Proposition 2.2]
applies.

2.14. Adjoint functors between quotient categories. As in [16, Propositions 4.3 —

4.8] we may consider the following “relative situation”. As our functor F = Fg;g and

U = Ug;g satisfy all needed properties, the proof of the following statements are the
same as in [16].
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Let AS/K and C%/K be two rigid closed subcategories of (G/K,R)-Gr such that
CG/K C AG/K  We have seen that if C¢/K is a localizing subcategory of AS/%X then
CG/H s a localizing subcategory of AS/H | Assume that this is the case. The functors U
and F induce by restriction the functors

U U
AG/K —>F AG/H and CG/K —>F CG/H.
Consider the canonical functors
AC/K =—= AG/K JcG/K  and  fG/H —= AC/H |¢C/H
{G/K {G/H

and define the functors

AG/K/CG/K —?>.AG/H/CG/H
F

by U=a%" oUoi%k and F =a%/K oFoi¢/H.
These functors have the following properties:
(2.14.1) F is a right adjoint of U and commute with direct sums;
(2.14.2) Uoa®/K = aC/H o U;
(2.14.3) U and F are exact;
(2.14.4) If M € AC/K/CG/K is projective (generator, small) then U(M) is projective
(generator, small) in ACG/H /CG/H
2.15. Rigid subcategories of (G/H,R)-Gr. If C = R-Gr then clearly C¢/H =
(G/H,R)-Gr. Let M be a G-graded R-module and denote M = D,cc M(g). We

shall consider several rigid full subcategories C of R-Gr associated with M and the cor-
responding rigid subcategories C¢/# of (G/H, R)-Gr. Again U means ua/!

g i G/H "
o If C = 08" [M] = o[M] then C¢/H = gC/H[M] = a[U(M)];
o If C = Gen®[M] = Gen[M] then C%/H = Gen®/H[M] = Gen|[U(M 1)];
o If C = Pres®'[M] = Pres[M] then CG/H = Pres®/f[M] = Pres[U(M)].

By Proposition 2.12 it follows that M is projective in 8" [M] if and only if it is
projective in o&/H [M], or equivalently, M is a Y-quasiprojective R-module. We also
have that if M is a generator of o [M], then M is a generator of o/ [M].

Since for every g € G, HOMg g r(M,N)gn = Hom(G/HR)_Gr(M(g_l,N), we obtain
that

mpy/ " =3 "{Im f | f € HOMg, 1, r(M,N)}

where pg/ fis defined in 1.10. This implies that
Gen®H[M] = {N € (G/H, R)-Gr | pg/H is an epimorphism }.
2.16. Y -quasiprojective module. Assume in adition that the G-graded R-module M

is X -quasiprojective. Let 7 = T8 [M] be as in 1.6 the torsion class consisting of objects
M’ € R-Cr satisfying Hompg.g, (M, M’) = 0. Since

Homp.g: (M, M') = [ Homp.c:(M(g~"), M') = [ [ Homp.c(M, M),
geG geG
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we have that M’ € 7 if and only if HOMg(M, M’) = 0. That implies that 7 is rigid,
since HOMg (M, M'(g)) = HOMg(M,M")(g) for all g € G.
We claim that

TG/H = (N € ¢%#[M] | HOM¢ /g r(M,N) = 0}.
Indeed, by Proposition 2.3 a) and Corollary 2.4, it is enough to show that for any M’ €
o8 [M], M' € T if and only if HOM¢,p r(M,U(M')) = 0. But this follows immediately
from 1.12. Moreover, since by 1.5

Hom g, u r).ar(M,N) = H Hom G/, r)-.cr(M (g~ "), N)
geqG

= | [ Homc,m,ry-c:(M(g™", M)ga,
geG
we have that N € TE/H if and only if Hom(G/H’R)_Gr(M, N) =0, that is, 7 is the torsion
theory on o#[M] determined by M . Finally, note that by [12, Theorem 3.7], N € T¢/H
if and only if Hompg(M,N) =0.
These arguments also show that for the corresponding torsionfree class we have that
for any N € o®[M], N is M -faitful if and only if

X # 0 for every non zero subobject X of N
& Hom(G/K’R)_Gr(]\;[, X) # 0 for every non zero subobject X of N
< HOMg,k r(M, X) # 0 for every non zero subobject X of N
< Homp (M, X) # 0 for every non zero subobject X of N.

We shall also consider the following categories associated to M :

o If C = C&¥[M] = o8 [M]/7T% (which can be identified with the full subcategory
of o8 [M] consisting of 7 -closed objects), then CE/H = CCE/H[M] = aC/H[M]/TC/H
with the similar identification. By 2.14 it follows that we have the pair (U, F) of adjoint
functors between C&/K and CG/H

o If C = GF®'[M] = GF[M] is the full subcategory of o2"[M] consists of M -generated,
T -torsionfree objects, then again C¢/H = GFY/H[M] = GF[U(M)]. Again we have the
adjoint pair (U,F) between GF/X[M] and GFY/H[M].

2.17. The graded Gabriel topology on E. The G-graded X -quasiprojective module
M determines a Gabriel topology on S = Endg(M)°P. If we denote by J° the two-sided
ideal of S consisting of the endomorphisms which factor through a finitely generated R-
submodule of M, then by [7, Theorem 1.3], J° is an idempotent ideal, MJ% = M and
the associated Gabriel topology G° consists of left ideals I of S satisfying MT = M .
Let E = ENDg(M) and J = ENJ?. The next lemma and 2.10 show that
G ={leL¥(R)|JCI}={I€L*R)|MI=DM}
is a G-graded Gabriel topology on E. It also follows that if H is a subgroup of G, then
GOH —{TeCH(R)|JCI}={IeLSHR)| MI=DM}
is a G/H -graded left Gabriel topology on E.
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2.18. Lemma. Let A be a subring of S containing E. Then the following statements
hold.

a) J is an G-graded idempotent two-sided ideal of E;

b) JA=F;

c) Mp A= M.

Proof. a) Let o = > g, € J with oy, € E, and let M’ be a finitely generated
R-submodule of M such that Ima C M’. Replacing the generators of M’ by their
homogeneous components, we may assume that M’ is a G-graded submodule of M. Let
m € M be a homogeneous element. Then «,4, (m) € M are also homogeneous, and since
a(m) =31, ag(m) € M, it follows that Ima,, C M’, that is, ay, € J, 1 <i<n.

The remaining statements are proved as in [9, Theorem 2.1] and [7, Theorem 1.3], but
working with homogeneous elements and grade preserving maps.

b) Let a € J and 8 € A. Thus we have the commutative diagram:

M = M
M/

with M’ a G-graded finitely generated R-submodule of M. Since M’ is finitely gen-
erated, §oq € Homgr(M', M) = HOMg(M', M) thus af = foa = Boqgod €
HOMg(M, M) = E.

¢) We have the natural homomorphisms p: M @ A — M, pu(m ® ) = mfB = B(m)
and v: M - M®gA, v(m) =m®1. Then (pov)(m) = m, and for any m@ 3 € M®g A
we can find m; € M and o; € J, 1 <i<n, such that >  m;a; =m (for MJ = M).
Consequently,

B

M

(vopu)(m® pB)=v(mp)=mpe 1= Zmiazﬂ@ﬂ
i=1
= Zmi@)aiﬁzzmiai@ﬂ:m@ﬁa
i=1 i=1
so v is the inverse of p.

3. 2-QUASIPROJECTIVE MODULES AND EQUIVALENCES

3.1. In this section we shall use the notations and assumptions of 2.15 — 2.18. Recall that
H is a subgroup of G, M is a G-graded L-quasiprojective R-module, M = @geG M(g),
E = ENDg(M)°P, and J is the idempotent G-graded two-sided ideal of E consisting
of endomorphisms which factor trough a (G-graded) finitely generated submodule of M .
Then M determines the (hereditary) torsion class 7¢/# C ¢%/H[M] as in 2.16, and the
G/H -graded left Gabriel topology G&/# on E as in 2.17.

Before proving our main results, we need several lemmas.
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3.2. Lemma. The functor HOMg, g r(M,—): 0%/H[M] — (G/H, E)-Gr is ezact.

Proof. For any g € G, M(g) is projective in o/ H[M] since it is a direct summand of
M. Applying the exact functor Hom ¢/, r)-cr (M (g71),—) to an exact sequence 0 —
N’ — N — N” — 0 from ¢/ H[M], and using 1.9 we obtain the exact sequence

0 — HOMeg 11, 5(M, N') — HOMg, sz (M, N) — HOMg /51 (M, N) = 0
in (G/H, E)-Gr, which proves the lemma.

3.3. Lemma. a) M™ € Stat®/®[M] for all nonnegative integers n ;
b) Pres®/H[M] = Stat®/# [M];
c) Adst®H[M] = ImHOMg, 5 r(M, —);
d) Let N € (G/H,R)-Gr, X = HOMg g r(M,N) € (G/H, E)-Gr and denote

(0¥ ™). = HOMg g1 r (M, o).

Then fr)g/ T and (pg/ H)* are isomorphisms inverse to each other;

e) Let X € (G/H,E)-Gr, N =M ®gr X € (G/H, E)-Gr and denote

G/H G/H
) = M o,

Then pg/ " and (ni/ H)* are isomorphisms inverse to each other;
f) If N € a%/H[M], then pg/H has torsion kernel and cokernel.

Proof. a) It is clear that we can apply Lemma 2.18 with A = HOM¢q, g r(M, M), so we
have the natural isomorphisms M ®g HOMq, g (M, M") =2 M @ HOM¢, g r(M, M)",
that is, M" e Stat®/H[M] for all n.

b) The fact that M®) € Stat[M] for any set A follows by the argument used in [9,
Theorem 2.1], observing that the homomorphism s considered there is actually graded of
degree one in our case. This and Lemma 3.2 implies that Pres®/#[M] C Stat®/#[M].
Observe that the other inclusion always holds, since

Stat[M] CImM Qg HOMG/HJ{(M, —) - PreSG/H[M]'

c) follows from b) using [4, Theorem 1.6].

d) By c) we have that X = HOMg /gy r(M,N) € Adst®/®[M], hence nf(/H is an
isomorphism. From the adjunction we obtain (pg/ H)>k o ng/ m—1 x, hence (pg/ H)* is
the inverse of n)cé/ H

e) is the dual of d).

f) For any N € ¢%/H[M] we have the exact sequence

G/H

0— Kerpg/H — M ®p HOM¢, g r(M,N) NN - Cokerpg/H — 0.

in (G/H, R)-Gr. Applying the exact functor HOM¢, g r(M, —), and having in the mind
G/H G/H

that (py' " )« is an isomorphism, it follows that HOM¢q, g r(M,Kerpy' ™) = 0, that is
Ker pg/ " belongs to 7E/H | For the cokernel, it is enough to observe that Coker pg/ B =

N/Im p]C\;/ A Im pg/ H-nN 7> and the torsion theory class 7¢/#[M] is generated by the

objects N/N; with N € a%/H[M].
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3.4. Lemma. If g € G and I is a G/H -graded left ideal of E(g), then the induced
homomorphism M @g I — M(g) has torsion kernel in a&/H[M].

Proof. First assume that I is G-graded. We claim that
nt : I — HOMRg(M,M ®p I)

is an isomorphism. Indeed we have the commutative diagram

0 I E(g)

lﬁ%r l"%r( 9)

HOMg(M,M @ I) — HOMg(M, M ®g E(g))

with first row exact, and since HOMg(M,M @ E(g)) = HOMRr(M, M(g)) = E(g), it
follows that n%" is a monomorphism.

Since I is finitely generated, it follows that there is an epimorphism €, . a, B (h)kn —
I, for some finite subset Gy of G and some natural numbers kj,, h € Gy. Since the
functor HOMpg (M, M ®p —) is exact, we obtain the commutative diagram

@hGGf E(h)kh I O

l ’rl%r

HOMR(M, M ®F (Beq, E()*)) —=HOMg(M, M @5 I) —0
with exact rows. Moreover,

HOMR(M, M @5 (P E(h)*)) = @ HOMR(M, (M @5 E)(h)* =  E(h)*",
heGy heGy heGy

so 17 is an epimorphism and our claim follows.

Now let K = Ker(M ®g I — M(g)) for I a G-graded finitely generated ideal of
E(g). The first diagram shows that HOMg(M, K) = 0, that means, K € 75". Thus
Ugﬁq(K) € TG/H for every H < G.

Finally, let I be a G/H -graded left ideal of E(g) as in the hypothesis of the lemma.
We may write I = >, In, where {I\ | A € A} is the set of all (ungraded) finitely
generated subideals of I. For A € A, the set of G-homogeneous components of a finite
set of generators of I is finite too, and this set generates a G-graded left ideal, say I},
containing Iy . This means that the set of finitely generated G-graded left subideals of I is
cofinal in {1y | A€ A}, s0 I =3} ., I}. If K\ denotes the kernel of the homomorphism
M ®g I — M(g), A € A, then we already have seen that K, € 7¢/H . Since direct
limits are exact, we have the isomorphism Ker(M ®g I — M(g)) = Y .5 K, hence
Ker(M ®@p I — M(g)) € T¢/H .
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3.5. Lemma. Let X — Y be a monomorphism in (G/H,E)-Gr. Then the induced
homomorphism M @5 X — M ®@g Y has torsion kernel in %/ [M].

Proof. By standard arguments as in [18, Propositions 10.4 and 10.6] we see that this lemma
is actually equivalent to the previous one and to the statement that HOM¢, g r(M, Q)
is an injective object of (G/H, R)-Gr, where @ is an arbitrary injective cogenerator of
torsion theory (7C¢/H FG/H),

3.6. Lemma. The G-graded (R, E)-bimodules M ®g J and M are isomorphic.

Proof. The image of the canonical homomorphism p: JQgM — M is MJ and MJ = M,
so p is surjective. But p is induced by the monomorphism 0 — J — FE, hence its
kernel K is torsion. The projectivity of M in e%/#[M] implies that the short exact
sequence 0 - K — M ®g J — M — 0 splits, and K, as an epimorphic image of
M @p J € Gen®H[M], belongs to Gen®/H[M]. Consequently, K = 0 and p is an

isomorphism.
3.7. Lemma. If X is a G/H -graded E-module, then the following are equivalent:
(1) X is GE/H _torsion;
(i) J®r X =0;
(i) M ®gX =0.
Proof. (i)=-(ii) Let a® z € J®g X. Since J is idempotent we can find 3;,v; € J such
that « = Y"1, B;7;. Then a®z =Y, fivi®r =Y. 3i®v;x =0, hence JgX = 0.
(ii) = (ili) By Lemma 3.6 we have that M g X = M Qp J g X =M ®r0=0.
(iii)= (i) First, we shall show that M ®g X’ = 0 for all subobjects X’ of X in
(G/H, R)-Gr. Indeed, if X’ is such a subobject, then

M@E X/ :KBF(M ®E X/ — 0) :KGT(M ®E X/ — M@E X)

belongs to 7/ | and clearly M ®p X' € GenG/H[M], hence M @r X' =0.
Now let € X 15 . Since lr(x) € £g§H(R), we obtain the short exact sequence

0 — {lr(z) — E(9) = Ex — 0.

Since Fx is a subobject of X, we have M ®@gr Fx = 0, hence the above exact sequence
induce an epimorphism M ®pg {r(x) — M(g). On the other hand, the image of the map
M @ lgr(z) — M(g) is Mlgr(x), so M = Mlgr(x) and lp(x) € GE/H

3.8. Lemma. The functor HOMq, y r(M,—): (G/H,R)-Gr — (G/H, E)-Gr factors
through the inclusion (G/H,E,G%/")-Gr — (G/H, E)-Gr.

Proof. Let N € (G/H,R)-Gr. By Lemmas 1.11 and 3.6 we have the canonical isomor-
phisms

HOMg, m,p(J,HOMg /g r(M,N)) 2 HOMg /g r(M ®@p J,N) =2 HOMg, g r(M, N),

and by 2.10 this means that HOMg, g r(M, N) is GE/H _closed.



GRADED ENDOMORPHISM RINGS AND EQUIVALENCES 19

3.9. Theorem. The functor HOM¢, g r(M,—): (G/H, R)-Gr — (G/H, E)-Gr restricts
to the following equivalences of categories:

a) Pres®/H[M] — (G/H, E,GC/H)-Gr with inverse M Qg — ;

b) GFYH[M] — (G/H, E,GE/H)-Gr with inverse M ®g — ;

c¢) CE/HIM] — (G/H, E,G%/")-Gr with inverse a®/" o (M ®p —).

Proof. a) We have seen that the functors HOM¢ /g, r(M, —) and M ®g — are well defined
between Pres®/#[M] and (G/H, E,GC/H).

Let N € PresG/H[M]. Then pg/H: M ®g HOMg g r(M, N) — N is an isomorphism
by Lemma 3.3 b). Let X € (G/H, E,G%/H)-Gr and put K = Kerng/H, C = Coker ng/H.
Tensoring with M the exact sequence

G/H

0— K — X 5 HOMg, g r(M,M @5 X) — C — 0

we obtain the exact sequence

G/H
Mep X ("’Q)* M ®g HOMg, g r(M,M ® X) — M ®g C — 0.

By Lemma 3.3 d), (U)G(/H)* is an isomorphism, hence M ®p C' = 0, so by Lemma 3.7,
C is GE/H torsion. Moreover, the induced homomorphism M ®p K — M ®g X is zero,
hence M @ K = Ker(M ®p K — M ®g X) belongs to T7¢/H . On other hand, it is clear
that M @ K € GenG/H[M], so M @p K = 0, and again by Lemma 3.7, K is G&/H
torsion.

b) We can use the same argument as [7, Theorem 1.3 (ii)], replacing Hompg(—, —) with
HOMg /g, r(—, —)-

¢) We have the diagram of categories and functors

aC@/H M|

Pres®/# M) - CG/H M)

M®pHOMg,u r(M,—)

where i = i%/# | j = jS/H are the corresponding inclusion functors and a = a®/H is the

canonical adjoint of i. We claim that on the row we have equivalences inverse to each other.
In order to prove that, observe first that the functor M@gHOM¢, g, r(M, —): oC/H M) —
Pres®/H[M] is the right adjoint of the inclusion j, that is Pres¢/#[M] is a reflective
subcategory of a&/H [M]. Indeed, Lemma 3.3 gives the natural isomorphisms

Hom ¢ /p, py-ce(N, M ® g HOM¢/p r(M, L))
=~ Hom (g m,r)-cr(M @ HOMg, g r(M,N), M @ g HOMg, g r(M, L))
= Hom(G/H,E)-Gr(HOMG/H,R(Ma N), HOMg/H,R(M, L)),

Hom g, u,r)-ar(N, L) = Hom(q, m,r)-c:(HOMg g r(M, N), L)
=~ Hom (g u,e)-cr(HOMg /g r(M, N),HOMg, g r(M, L)
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for every N € Pres®/H[M] and every L € o©/H[M]. Moreover, the reflector M ®p
HOMg, m,r(M, —) is right exact between o@/H[M] and itself. Since the inclusion j is also
right exact, this implies that the reflector is exact between o@/#[M] and Pres®/H[M].
Thus, by the duals of [13, 5.1, 5.2, 5.3, Chapter V], we have that

o Pres“/H[M] is abelian;

e A morphism in Pres®/ HIM] is epimorphism in Pres®/ HIM] if and only if it is
epimorphism in o/ H[M];

e A morphism in Pres®/#[M] is monomorphism in Pres®/#[M] if and only if the
functor M ®g HOM¢, g, r(M, —) maps its kernel to zero in aC/H[M].

Note that for N € o®/H[M], the equality M ®pg HOMg g r(M,N) = 0 im-
plies that HOM¢g, g r(M,N) is GS/H _torsion and, since it is always torsionfree (even
closed), we have that HOM¢g, g r(M,N) = 0. Since the converse is obvious, M ®g
HOMg, g r(M,N) = 0 if and only if N € TG/H | In addition, the functor M ®p
HOMg, g r(M,—): /H[M] — Pres®/H[M] is left exact, since it is a right adjoint of j,
and also right exact by the above argument.

The inclusion functor j is obviously fully-faithful, so by [18, 13.11, Chapter I] it follows
that Pres®/H [M] is equivalent to the category of fractions of o%/#[M] relative to the
system

> ={f e Homo®H[M] | M ®5 HOMg, m,r(M, f) is invertible in Pres®/H[M]}.
To prove our claim, it is now enough to show that
> = {f € Hom o“/#[M] | Ker f, Coker f € T¢/H},

Indeed, let f € Homg,m,r)-cr(IV, L) with N, L € o¢/H[M] and Ker f, Coker f € TC/H
The exact sequence
0—>Kerf—>Ni>L—>Cokerf—>0

induce the exact sequence in Pres®/H[M]

0 =M @5 HOMg i (M, Ker f) — M @5 HOMg, i p(M, N) £
M KRE HOMGv/H’R(M, L) — M RF HOMG/H’R(M, Cokerf) — 0,
where f.. denotes the homomorphism M ®g HOM¢q, g r(M, f). Since
M ®E HOMg/H,R(M, Kerf) = M ®E HOMG/H’R(M, Cokerf) = 0
in @/ H[M], this equality holds in Pres®/#[M] too, and f,, is an isomorphism in
Pres®/H [ M].
Conversely, suppose that fi. is an isomorphism in Pres®/# [M]. Since this is a full

subcategory of o@/H[M] it follows that f,, is isomorphism in &%/ [M] too. The exact
sequence in a%/H[M]

M ®g HOMg g r(M,N) I Mog HOMg, g r(M, L) —

M RF HOMg/H’R(M, Cokerf) — 0
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shows that M ®g HOMg, g r(M, Coker f) = 0 in oC/H[M], that is, Coker f € TG/
The Ker-Coker lemma for the diagram

0> M ®&g HOMg, ;7. n(M, N) "> M ®5 HOM¢, 5 r(M, L) —> 0

lpﬁm lpf“{
f

0—— Ker f N L

implies that there is an exact sequence

JH G/H

Ker pf — Ker f — Coker py

But by Lemma 3.3 f), Ker pf/H and Coker pg/H belong to T7¢/H  hence Ker f € T¢/H |
and this completes the proof of our claim.

G/H)

Composing this equivalences with those obtained in a), and using the fact that (o5 = )«

is an isomorphism for all N € o®%/H[M], we obtain the desired equivalence between
CE/H[M] and (G/H,E,G/H)-Gr.

3.10. Note that the above diagram of categories and functors in not necessarily commu-
tative, since the functors iocaoj and j are not necessarily isomorphic.

3.11. Corollary. Let K < H < G be two subgroups, and let GE/X and GE/¥ the G/K
(respectively G/H )-graded left topologies considered in Theorem 3.9. Then there are the
following commutative diagram of categories and functors:

a)

. HOM¢ i, r(M,—)
Pres®/ X [M] ==——= (G/K, E,G%/¥)-Gr

B

eg/s] el i
G/H HOMg¢, i, r(M,—)

PI‘eS / [M] T@ (G/H,E, gG/H)—Gr

HOMg 5.1 (M, —)
GRS/ K] S (G/K, E, GG/ K )-Gr

M®Eg—
G/K G/K LG/K || 7:G/K
FG/H,H/UG/H FG/H,H/UG/H
HOMg, x,r(M,—)

(G/H,E,GE/H)-Gr

GFS/H M)

MQg—

HOMg, k,r(M,—)
CG/K[M] = (G/K,E, gG/K)_Gr

a Eo(Mog—)
G/K G/K G/K G/K
FG/H“/UG/H FG/H“UG/H

HOMg, g, r(M,—)
CC/H[M]) =———=(G/H,E,G/#)-Gr
aG/Ho(M®E—)
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Proof. a) Let N € Pres®/%[M]. We have the short exact sequence
0— HOMG/K,R(M, N) — HOMG/H}R(M, N) — C — 0

n (G/H,E)-Gr for ¢ = Coker HOM¢, i ,r(M,N) — HOMg g r(M,N). Tensoring
with M, and having in the mind that by Theorem 3.9, M ®r HOMg,/x r(M,N) =
N = M ®g HOM¢g, g r(M,N), we obtain that M ®g C = 0, hence C' is GE/H _torsion.
Consequently, in (G/H, E,G%/H)-Gr we have the isomorphism

UG5 (HOMg i (M, N)) 2 HOMg, 1 p(M, UG (N)).

G/H
Since the rows are equivalences, Fg;g is the right adjoint of Ug;g nd Fg; 5 s the
right adjoint of UG VH it is clear that the diagram commutes.
b) By Theorem 3.9 every object of GFS/X[M] can be regarded as N for a suitable
N € Pres®/®[M]. Since HOMq, g r(M,N) = HOMq/x r(M,N), we have by a) the
isomorphisms

UG 1 (HOMG) i (M, N)) 2 Ug/ 5 (HOMg, i g (M, N)) & HOMe 1, r (M, UG/ 1 (N)

n (G/H,E,GE/")-Gr.
G/K _ 11G/K
On the other hand, by 2.13 d), tg/H(UG/H(N>) = UG/H(tg/H(N)) so

HOMg, i (M, Ug);(N)) = HOMg i r(M, UGl (N)).

Again, this is enough for the commutativity of the diagram. L

c¢) Let X € (G/H,E,GE/H)-Gr. By a) we have the isomorphism M &g Ug;g(X) =
Ug;g(M ®p X), since both members belong to Pres®/%[M]. On the other hand, using
(2.14.2), we obtain

11G/K G/K ~ G/K
(Ug g 0a®/ ™) (M @p X) = (%7 0 UG/ ) (M @5 X) = a® ™ (M @p UG5 (X)),

so the diagram is commutative.

3.12. Theorem. Let S = Endr(M), G% ={I € L(S) | J° C I} asin 2.17, and let ¢*
and @, denote the restriction, respectively the extension of scalars induced by the inclusion
p: E— S. Then

a) S is isomorphic to the ring of the quotients of E with respect the topology G/ ;

b) There is the following commutative diagram of categories and functors

Hompg (M,—)
Pres®/¢[M] ? (E,G%/%)-Mod
o
o=
HOmR(M,—)
Pres[M] (S,G)-Mod,

M®s—
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where @, and p* are the induced functor between the quotient categories.

Proof. a) Regarding S as an object of F-Mod, we have the short exact sequence of E-
modules
0— E -2 S — Cokeryp — 0,

which induces the exact sequence in R-Mod
M@pE — M®@gS— M®g Coker ¢ — 0.

By 2.18, we have that M @ E = M = M ®g S, so M ®g Coker ¢ = 0, hence Coker ¢
is G9/C torsion. Moreover, S = Hompg(M, M) is G&/C-closed by Lemma 3.8, hence [3,
Lemma 2.6] implies our statement.

b) The fact that the second row is an equivalence is just [7, Theorem 1.3 a)]. If
N € Pres[M], then we have the natural S-homomorphisms

ON: HOIIlR(M,N)—>S®EHOHIR(M7N), gb(f):l@f
"QDNiS@EHOI’HR(M,N)HHOHIR(M,N), ”QDN(Oé®f):Oéf:fOOé.

We have that ¢¥n o dn = lxompz(a,N)> SO ¢N is an monomorphism. Moreover, Coker ¢
is G -torsion. Indeed the argument given in Corollary 3.11 shows that M ®g C = 0, and
by an argument similar to that in Lemma 3.7, this implies that C' € G. Thus ¢y is an
isomorphism in (S, G%)-Mod.

We also have that Hompg (M, N) is G-closed, hence it is isomorphic in (S, G%)-Mod
to its module of quotients. By the definition of the functor ¢*, ¢*(Hompg(M,N)) =
Homp (M, N), and the diagram commutes.

4. APPLICATIONS AND EXAMPLES

4.1. We continue to use the notations and assumptions of 3.1. Observe that M is finitely
generated if and only if J = E, and in this case we have that £ = S. This situation was
discussed in [11, Theorem 3.12]. In particular if M is a progenerator of R-Mod we obtain
a graded Morita equivalence between R and S.

4.2. If M is a simple object of R-Gr, then £ = S and M is projective generator of
o[M], hence o[M] is equivalent with E-Mod. This is the main result of [5], the so called
“direct Clifford theorem”. This was generalized in [10, Corollary 2.11] to the case when
M is semisimple in R-Gr, but with S instead of E.

4.3. Assume that F is strongly graded. Then we know that J; is a G-invariant two-sided
ideal of F1, and we claim that it is also idempotent.

Indeed, if o € J1, then a = Z?:l Bivi for some f3;,~v; € J, and we may clearly assume
that f3;,; are homogeneous. Fix ¢ and assume that 3; € Ey, so v; € E,-1. Since
Ey1E, = Ey, we can find €),€ Eg1, ¢ € E; 1 < j < M such that > 7", ele; =
1. It follows that @'e;,ej’yi € E; and (;y; = Z?Lzl(ﬁie;)(’yiej), and our claim follows
immediately.
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Similarly, Jy is a idempotent ideal of Ep for every subgroup H of G. The functors
E ®pg, — and (—)py give an equivalence between (G/H, F)-Gr and Ey-Mod, so for a
G/H -graded module X we have a natural isomorphism X = FE ®p, X, and similar
statements hold for right modules. In particular we have that

M®pX=Meog, X.

Moreover, the natural homomorphism X — HOMg /g g(J,X) of G/H-graded E-
modules comes, via the functor F ®pg, —, from a unique homomorphism Xy —
Hompg,, (Jg, Xg) of Ey-modules. From these observations we obtain:
The set
GH ={IcL(Ey)|JuCI}={IcL(Ey)|MI=M}

is a left Gabriel topology on Fy and we have the commutative diagram

HOM¢ )k, r(M,—)

Pres®/H M) e (G/H,E,G%/H)-Gr
o
| e
Hom (g, u,r)-cr(M,—)
PresC/H [M] o (Ex,G7)-Mod
EHi

where all the arrows are equivalences.

If R is also strongly graded, then we obtain the commutative diagram:

G/H HOMg, g, r(M,—)
Pres®/f[M] =————= (G/H, E,G%/")-Gr

MQEg—
R®RHT\L()H E®EH_/H/()H
HOmRH (MH7_)
Pres[Mp] T — (Ey,GH)-Mod
H

Similar statements are true if we replace Pres with C or GF.

4.4. Our results generalize [3, Theorems 4.8, 4.12 and 4.15|, which were obtained in
the case when M is the canonical generator P, s R(g9) of R-Gr (actually only the
relationship between the categories R-Mod, R-Gr, E-Mod and FE-Gr was considered
there). Indeed, it is enough to observe that our ideal J coincide with the ideal 7(U)
introduced in [3, p. 141].

Theorem 3.9 and Corollary 3.11 above should also be compared with the results of [15,
Sections 2 and 3], but strictly speaking it does not generalize them. The point is that in
the particular case of M = @, R(g), the ring E can be canonically identified with a
ring of matrices with elements in R, and it contains a G-graded subring R{G}, which
coincides with FE if and only if the group G is finite. This subring still retains the essential
information about E, and can be obtain equivalences which are similar to Theorem 3.12.
This approach was generalized in a different direction by G. Abrams and C. Menini [1].
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4.5. Assume that the ideal J is pure (see 1.4). We know that the localizing subcategory
corresponding to the G'/H -graded topology G&/H is

K¢/'H = (X € (G/H,E)-Gr | JX = 0}.

Denote also
JEH = (X € (G/H,E)-Gr| JX = X}.

Using an appropriate graded version of [2, Theorem 1.6] (which can be easily deduced)
we obtain that J%/# is a localizing subcategory of (G/H, E)-Gr and there are category

equivalences

(G/H, B)-Gr/ g%/ = (G H, B/)-Cr = K/

and
(G/H,E,GS/™)-Gr ~ (G/H, E)-Gr/KCG/H =~ 7CG/H

If moreover one can write J = ), ) paF, where {px | A € A} is a nonempty set of
orthogonal idempotents in E;, then J¢/# is equivalent to the category (G/H,J)-Gr of
G/ H -graded unital J-module.

If in addition E is strongly graded, then (G/H, E,G%/#)-Gr is equivalent to Jz-Mod.
Note that all the assumptions made here are satisfied if M = P, R(g) is the canonical
generator of R-Gr.
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