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Str. Mihail Kogălniceanu nr. 1
RO-3400 Cluj-Napoca, ROMANIA

September 13, 2001

Abstract. Let R be a G -graded ring, M a G -graded Σ-quasiprojective R -module, and
E = ENDR(M)op its graded ring of endomorphisms. For any subgroup H of G , we prove

that certain full subcategories of G/H -graded R -modules associated with M are equivalent

to a quotient category of G/H -graded E -modules determined by the idempotent G -graded
ideal of E consisting of endomorphisms which factor through a finitely generated submodule

of M . Properties and applications of these equivalences are also examined.

Introduction

Let R be a ring, M be a left R -module and S = EndR(M)op . Assuming that M is
Σ-quasiprojective, J.L. Garćıa Hernández and J.L. Gómez Pardo proved in [7, Theorem
1.3] that the functors HomR(M) and M ⊗S − induce an equivalence between the full
subcategory of M -presented R -module and a certain subcategory of S-Mod, which coin-
cide with S-Mod if and only if M is finitely generated. Two other realization theorems
as subcategories of R-Mod of the same quotient category of S-Mod were given by the
same authors, and the equivalences were generalized in [8] in the context of Grothendieck
categories.

Now assume that R =
⊕

g∈GRg and M =
⊕

g∈GMg are graded by a group G . Then
S has a subring E = END(M)op which is also G -graded, and E = S if G is finite or
M is finitely generated. If M is finitely generated, it was shown in [11] that the above
equivalence preserves the modules graded by (transitive) G -sets, and it is compatible
whith the grade forgetting functor. This kind of graded equivalences has appeared in
two contexts. One of them is the Clifford theory of graded rings, as developed especially
by E. Dade in [5], where M is assumed to be a simple object of the category R-Gr
of G -graded R -modules. The other is when M is taken to be the canonical generator

1991 Mathematics Subject Classification. 16W50, 16S50, 16S90, 16D90, 18E15, 18E40.

Key words and phrases. modules graded by G -sets, rigid localizing subcategories, graded Gabriel
topologies, graded endomorphism rings, equivalences, quasiprojective modules, Grothendieck categories.

1



2 ANDREI MARCUS AND CIPRIAN MODOI⊕
g∈GR(g) of R-Gr. Several authors have studied the case of infinite G , and the results

of T. Albu and C. Năstăsescu [3] are among our main starting points here.

The aim of the present paper is to establish equivalences between categories of modules
graded by G -sets, which cover and unify the above results. The main difficulty is that
we want to have graded modules in both sides of the equivalence, so we have to deal
with the graded ring E instead of S , and the functor HomR(M,−) must be replaced as
well. The paper is organized as follows. In Section 1 we provide the necessary background
material on torsion theory and on graded rings and modules. In Section 2 we develop to
some extent a theory of rigid closed and localizing subcategories of modules graded by
G -sets, and their Gabriel topology counterpart. We are concerned with the behaviour
of the grade forgetting functor and its right adjoint with respect to these subcategories.
Such a study was initiated in [10] and [16] in the case of G -graded modules. The main
results of the paper is Theorem 3.9 and Corollary 3.11, where, for any subgroup H of
G , we prove the existence of equivalences between certain subcategories of G/H -graded
R -modules associated to the G -graded Σ-quasiprojective module M , and a subcategory
of G/H -graded E -modules; we investigate the compatibility of these equivalences with
the above mentioned grade forgetting functor.

Note that if E 6= S , Theorem 3.9 does not immediately give the equivalences of
Garćıa Hernández and Gómez Pardo. The precise relationship with their results is pre-
sented in Theorem 3.12. In the last section we discuss applications of our results to various
particular cases.

Let us briefly present our general assumptions and notations. Rings are associative
with identity, and modules are left, unless otherwise stated. A module will often be
regarded as a right module over its endomorphism ring, so if f and g are two composable
homomorphisms, we shall write fg = g ◦ f .

If A is a ring, we denote by A-Mod the category of A -modules, and by L(A) the
lattice of left ideals of A . If I ∈ L(A) and a ∈ A , let (I : a) = {b ∈ A | ba ∈ I} , and if
M is a A -module and m ∈M , then `A(m) = {a ∈ A | am = 0} is the left annihilator of
m .

If R =
⊕

g∈GRg is a ring graded by a group G , and H is a subgroup of G , we denote by
(G/H,R)-Gr the category of R -modules graded by the G -set G/H and grade-preserving
R -homomorphisms. This is a Grothendieck category, and we refer the reader to [14] for
its basic properties. In particular, (G/1, R)-Gr is the category R-Gr of G -graded R -
modules, and (G/G,R)-Gr = R-Mod. If N =

⊕
x∈G/H Nx is an object of (G/H,R)-Gr,

and X is a subset of G/H , we denote NX =
⊕

x∈X Nx . We shall also use the notation
[G/H] (respectively [H\G]) for a system of representatives of the left (respectively right)
cosets of H in G .

We refer to [19] for general facts on torsion theory, and to [17] for the theory of group
graded rings. All the other notation used in the paper will be introduced or recalled in
Sections 1 and 2.
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1. Preliminaries

1.1. Torsion theory. Let A be a Grothendieck category. A class T of objects of A
is called a pretorsion class if it is closed under quotients and direct sums. We denote by
tA : A → A the preradical associated to T , so for every object M of A , tA(M) is the
largest subobject of M belonging to T . A class T (respectively F ) is called torsion
(respectively torsionfree) class if it is closed under quotients, extensions and direct sums
(respectively subobjects, extensions and products). A class which is both torsion and
torsionfree is said to be a TTF-class. The torsion theory (T ,F) is hereditary if T is
closed under subobjects too. Recall that M ∈ T if and only if tA(M) = M and M ∈ F
if and only if tA(M) = 0.

1.2. Localizing subcategories and Gabriel’s theorem. The full subcategory C of A
is called closed subcategory (or hereditary pretorsion class) if it closed under subobjects,
quotients and direct sums; if this is the case C is a Grothendieck category too. C is
a localizing subcategory if in addition it it closed under extensions. If C is a localizing
subcategory of A then one may construct the quotient category A/C with the canonical
functors:

A
aC // A/C
iC

oo

which satisfy the following properties:
• aC is exact and C = KeraC ;
• iC is a full and faithful right adjoint of aC ;
• The natural transformation Φ: aC ◦ iC → 1A/C is an isomorphism.
Consider the natural transformation Ψ: 1A → iC ◦ aC . Then for any object M of A

the kernel and the cokernel of ΨM are C -torsion (belong to C ), and M is called C -closed
if ΨM is an isomorphism. Recall that M is C -closed if and only if it is C -torsionfree
and C -injective (that is, for each short exact sequence 0 → N ′ u−→ N → Cokeru → 0
with Cokeru ∈ C the induced homomorphism u∗ : HomA(N,M) → HomA(N ′,M) is
surjective).

Moreover, the quotient category A/C can be identified with the full subcategory of A
consisting of all C -closed objects, which is again a Grothendieck category.

Conversely, a theorem of Gabriel states that if a : A → A′ and i : A′ → A are functors
between Grothendieck categories such that a is an exact left adjoint of i and the associated
natural transformation Φ: a ◦ i → 1A′ is an isomorphism, then Kera is a localizing
subcategory of A and a induces an equivalence between A/Kera and A′ .

1.3. Linear and Gabriel topologies. If A = A-Mod for a ring A , then the closed
(respectively localizing) subcategories of A correspond to the left linear (respectively
Gabriel) topologies G of A . Recall that a filter G of left ideals of A is a left linear
topology if I ∈ G and a ∈ A implies (I : a) ∈ G and is a left Gabriel topology if, in
addition, for each I ∈ L(A) for that there is an I ′ ∈ G with (I : a) ∈ G for all a ∈ I ′

we have I ∈ G . The correspondence is given by C 7→ GC = {I ∈A A | A/I ∈ C} and
G 7→ CG = {X ∈ A-Mod | `A(x) ∈ G for all x ∈ X} . In this case we shall write G -torsion
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(free), G -injective and G -closed instead of C -torsion (free), C -injective and C -closed, and
(A,G)-Mod denotes the full subcategory of A-Mod consisting of G -closed modules.

1.4. Pure ideals. The following interesting situation was discussed in [2]. Let J be an
two-sided ideal and assume that JA is pure (that is, for each M ∈ A-Mod the canonical
morphism J ⊗A M → JM is an monomorphism) or, equivalently, A/J is flat as right
A -module. It follows that J is an idempotent ideal. Consider the full subcategories of
A-Mod:

J = {M ∈ A-Mod | JM = M}, C = {M ∈ A-Mod | JM = 0}

and the functors

J
i // A-Mod

ϕ∗
//

a
oo A/J-Mod

ϕ∗
oo

where ϕ∗(M) = A/J ⊗A M ∼= M/JM , ϕ∗ is the scalar restriction, i(M) = HomA(J,M)
and a(M) = J ⊗A M ∼= JM . Thus we have:

a) J is a localizing subcategory and C is a TTF-class;
b) ϕ∗ and ϕ∗ induce equivalences A-Mod/J ∼= A/J-Mod ∼= C = Kera ;
c) a is the right adjoint of the inclusion functor j : J → A-Mod and a a left adjoint

of i ;
d) the natural transformation Φ: a ◦ i → 1J is an isomorphism, hence a and i induce

an equivalence A-Mod/C ∼= J .
As a particular case, let J =

∑
λ∈Λ pλA where {pλ | λ ∈ Λ} is a non-empty set of

orthogonal idempotents of A . Then J is a pure ideal and assume that J is a two-sided
ideal, that is,

∑
λ∈ΛApλ ⊆ J . (Note that if in addition

∑
λ∈ΛApλ = J , then J is a ring

with enough idempotents.) Then J is isomorphic to category J-Mod of unital J -modules
(that is JN = N ).

1.5. Subcategories associated to an object. Return to our general situation, and fix
an object M of A . Let Gen[M ] be the full subcategory of A consists of M -generated
objects and σ[M ] the full subcategory consisting of M -subgenerated objects (subobjects
of objects of Gen[M ]), so σ[M ] is the smallest closed subcategory of A containing M . If
N ∈ A let NM = TrM (N) be the largest M -generated subobject of N . If M generates
σ[M ] , that is, σ[M ] = Gen[M ] , then M is called self-generator.

Let T be the smallest localizing subcategory of σ[M ] containing the objects N/NM

with N ∈ σ[M ] . Denote t : σ[M ] → σ[M ] the corresponding radical, N = N/t(N)
and F the corresponding torsion-free class. The objects of F are called M -faithful or
M -distinguished, and it is easy to see that N ∈ σ[M ] is M -faithful if and only if for
every non-zero morphism g : X → N in σ[M ] there is a morphism f : M → X such that
g ◦ f 6= 0 [8, Proposition 1.2].

We shall consider the following full subcategories of σ[M ] :
• Pres[M ] consisting of all M -presented objects of A ;
• C[M ] = σ[M ]/T which can be identified as usual with the full subcategory of T -

closed objects;
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• GF[M ] consisting of all M -generated, M -faithful objects.

1.6. Σ-quasiprojective objects. An object M of A is N -projective if for any exact
sequence N → N ′ → 0 the sequence HomA(M,N) → HomA(M,N ′) → 0 is exact too.
M is called quasiprojective if it is M -projective and M is Σ-quasiprojective if it is M (Λ) -
projective for any set Λ.

Assume that M is Σ-quasiprojective. Then the hereditary torsion class T of 1.5
consists of objects N ∈ σ[M ] satisfying HomA(M,N) = 0, and it is actually a TTF-
class. The corresponding torsion class is {X ∈ σ[M ] | HomA(X,N) = 0 for all N ∈ T } ,
which coincides with Gen[M ] since X/XM ∈ T for all X ∈ σ[M ] . It follows that
X 7→ XM is the radical associated to the torsion class Gen[M ] . For the corresponding
torsionfree class F we have by [7, Proposition 1.2] that N ∈ σ[M ] is M -faithful if and
only if HomA(M,X) 6= 0 for every nonzero subobject X of N , or equivalently, XM 6= 0
for every nonzero subobject X of N .

Finally, by [6, Proposition 1.2] we have that a(M) is a projective generator of C[M ]
and EndA(M) ∼= EndC[M ](a(M)), where a : A → C[M ] is the canonical functor.

1.7. Functors between categories of modules graded by G-sets. Let G be a
group, R =

⊕
g∈GRg a G -graded ring and fix two subgroups K ≤ H of G . We have two

functors connecting the categories (G/H,R)-Gr and (G/K,R)-Gr.
The grade forgetting functor

U = UG/K
G/H : (G/K,R)-Gr → (G/H,R)-Gr

is defined as follows: for M =
⊕

x∈G/K Mx ∈ (G/K,R)-Gr let

U(M) = M̄ =
⊕

y∈G/H

M̄y,

where M̄ = M and M̄y =
⊕

x⊆y Mx for all y ∈ G/H , and U(f) = f for every morphism
f : M →M ′ in (G/K,R)-Gr. In most of the cases, when it will be clear from context, we
simply denote U(M) by M .

The functor U has a right adjoint

F = FG/K
G/H : (G/H,R)-Gr → (G/K,R)-Gr

defined as follows: for N =
⊕

y∈G/H Ny ∈ (G/H,R)-Gr let

F(N) = Ñ =
⊕

x∈G/K

Ñxy,

where Ñx = NxH with multiplication by scalars given by rgñx = rgny ∈ Ngx , for y =
xH, ñx = ny ∈ Ny, rg ∈ Rg, g ∈ G . If f : N → N ′ is morphism in (G/H,R)-Gr, then
f̃ = F(f) : Ñ → Ñ ′ is given by f̃(ñx) = f(ny) ∈ Ñx = Ny , with y = xH and ñx = ny as
above.
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The unit ζ if the adjoint pair (U,F) is defined by

ζM : M → F(U(M)), ζM (mx) = mx ∈ F(U(M))x

for all x ∈ G/H and mx ∈Mx . The counit ξ is given by

ξN : U(F(N)) → N, ξ(ñx) = ñx ∈ NxH

for all ñx = ny ∈ Ny , x ∈ G/K and y = xH . Observe that ξN is an epimorphism and
ζM is a monomorphism for every N ∈ (G/H,R)-Gr and M ∈ (G/K,R)-Gr.

Recall also that if H/K is finite then FG/K
G/H is a left adjoint of UG/K

G/H too.

If x ∈ G/H one can also define the x-th suspension functor

Sx : (G/H,R)-Gr → (G/xH,R)-Gr, Sx(N) = N(x)

where xH = xHx−1 , N(x) = N and N(x)y = Nyx for all y ∈ G/xH . Clearly Sx is an
equivalence with inverse Sx−1

.
The following facts are well-know in the case of R-Gr and R-Mod see [16, Proposition

1.4]:

1.8. Lemma. a) The functors UG/K
G/H and FG/K

G/H are exact and commute with direct
products and direct sums;

b) If K = 1 and M ∈ R-Gr then FG/K
G/H(FG/K

G/H(M)) ∼=
⊕

h∈H M(h) as G-graded
R -module.

Proof. a) It is clear that U and F are exact, commute with direct product and U commute
with direct sums.

Let N =
⊕

λ∈ΛN
λ be a direct sum in (G/H,R)-Gr and let qλ : Nλ → N be the canon-

ical monomorphism. We have the morphism F(qλ) : F(Nλ) → F(N) in (G/K,R)-Gr
which induce the morphism

u :
⊕
λ∈Λ

F(Nλ) → F(N)

Let (ñλ)λ∈Λ ∈
⊕

λ∈Λ F(Nλ) be a homogeneous element of degree x ∈ G/K where for each
λ ∈ Λ, ñλ = nλ ∈ Nλ

y for y ∈ G/H such that x ⊆ y . Then u((ñλ)λ∈Λ) = ñ ∈ F(N)x ,
with ñ = n ∈ Ny where n = (ñλ)λ∈Λ . It is easy to see that u is an isomorphism.

b) Denote U = UG/K
G/H , F = FG/K

G/H and N = U(M) =
⊕

g∈[G/H]NgH , where NgH =⊕
h∈H Mgh .
Let h ∈ H and m ∈ M(h)g = Mgh . By the above, m determines an unique element

φ(m) = m belonging to the component Mgh of Ñg . It is clear that we have obtained an
isomorphism φ :

⊕
h∈H M(h) → Ñ of G -graded R -module.

1.9. Graded groups of homomorphisms. Let M =
⊕

g∈GMg ∈ R-Gr, and N =⊕
x∈G/H Nx ∈ (G/H,R)-Gr. By [11, 2.9], for each x ∈ G/H the set

HOMG/H,R(M,N)x = {f ∈ HomR(M,N) | f(Mg) ⊆ Ngx for all g ∈ G}
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is an additive subgroup of HomR(M,N), and by [12, Proposition 3.4] it is a closed
subset of HomR(M,N) in the finite topology. Note that HOMG/H,R(M,N)H =
Hom(G/H,R)-Gr(M,N). Moreover the sum

HOMG/H,R(M,N) =
∑

x∈G/H

HOMG/K,R(M,N)x

is direct, and by [12, Theorem 3.7], HomR(M,N) is the completion of HOMG/H,R(M,N)
in the finite topology.

In particular, if M ′ ∈ R-Gr, we denote HOMR(M,N) = HOMG/1,R(M,N), and let
E = END(M)op = HOMR(M,M) which is a subring of S = EndR(M)op . Then E is
a G -graded ring, M becomes a G -graded (R,E)-bimodule and HOMG/H,R(M,N) a
G/H -graded E -module.

Remark that for x = gH we have the equalities

HOMG/H,R(M,N)x = Hom(G/gH,R)-Gr(U
G/1
G/H(M), N(gH))

= Hom(G/H,R)-Gr(U
G/1
G/H(M(g−1), N).

Indeed, the first equality is in [11, 2.9]. For the second, if f ∈ HomR(M,N) then we have
the logical equivalences:

f(Mh) ⊆ NghH for all h ∈ G⇔ f(Mg′g−1) ⊆ Ng′H for all g′ ∈ G, (g′ = gh)

⇔ f(
⊕

k∈g′H

Mkg−1) ⊆ Ng′H for all g′ ∈ G

⇔ f(
⊕

k∈g′H

M(g−1)k) ⊆ Ng′H for all g′ ∈ G

⇔ f(UG/1
G/H(M(g−1))g′H) ⊆ Ng′H for all g′ ∈ G

⇔ f ∈ Hom(G/H,R)-Gr(U
G/1
G/H(M(g−1), N).

1.10. Static modules. The functor

HOMG/H,R(M,−) : (G/H,R)-Gr → (G/H,E)-Gr

is a right adjoint of the functor M ⊗E − . The unit and the counit of adjunction are
defined by

η
G/H
X : X → HOMG/H,R(M,M ⊗E X), η

G/H
X (x)(m) = x⊗m,

ρ
G/H
N : M ⊗E HOMG/H,R(M,N) → N, m⊗ f 7→ mf = f(m)

for all X ∈ (G/H,E)-Gr and N ∈ (G/H,R)-Gr.
We shall consider the full subcategories:

StatG/H [M ] = {N ∈ (G/H,R)-Gr | ρG/H
N is an isomorphism}
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AdstG/H [M ] = {X ∈ (G/H,E)-Gr | ηG/H
X is an isomorphism}

of (G/H,R)-Gr and (G/H,E)-Gr respectively.

Similarly the functor

Hom(G/H,R)-Gr(M,−) : (G/H,R)-Gr → EH -Mod

is a right adjoint of M ⊗EH
− : EH -Mod → (G/H,R)-Gr, where EH =

⊕
h∈H Eh is a

subring of End(G/H,R)-Gr(M)op .

1.11. Lemma. Let M be a G-graded (R,E)-module and I a G-graded E -module. Then
the functors

HOMG/H,R(M ⊗E I,−), HOMG/H,E(I,HOMG/H,R(M,−)) : (G/H,R)-Gr → Ab

are naturally isomorphic.

Proof. Since HOMG/H,R(M,−) is the right adjoint of M ⊗E − , for any g ∈ G and
N ∈ (G/H,R)-Gr we have the natural isomorphism

Hom(G/H,R)-Gr(M ⊗E I(g−1), N) ∼= Hom(G/H,E)-Gr(I(g−1),HOMG/H,R(M,N)).

Let [G/H] a set of representatives for the left cosets of H in G . We obtain the natural
isomorphisms:

HOMG/H,R(M ⊗E I,N) ∼=
⊕

g∈[G/H]

Hom(G/H,R)-Gr(M ⊗E I(g−1), N)

∼=
⊕

g∈[G/H]

Hom(G/H,E)-Gr(I(g−1),HOMG/H,R(M,N))

∼= HOMG/H,E(I,HOMG/H,R(M,N)).

1.12. The grade forgetting functor and HOM . Let K ≤ H ≤ G , M ∈ R-Gr and
N ∈ (G/H,R)-Gr. By [12, Corollary 3.8 a)], HOMG/K,R(M,N) is a dense subset of
HOMG/K,R(M,N) in the finite topology, and it is an interesting question whether

HOMG/H,R(M,UG/K
G/H(N)) = UG/K

G/H(HOMG/H,R(M,N)).

The equality clearly holds if the set H/K is finite. If H/K is infinite then by [12, Theorem
4.9] holds for every N ∈ (G/H,R)-Gr if and only if M is small in R-Mod.

1.13. Strongly graded rings. The G -graded ring R is called strongly graded if
RgRh = Rgh for all g, h ∈ G . By a theorem of E. Dade, R is strongly graded if and
only if the functors R ⊗R1 − : R1-Mod → R-Gr and (−)1 : R-Gr → R1-Mod are inverse
equivalences of categories. In this case, the functors R⊗RH

− : RH -Mod → (G/H,R)-Gr
and (−)H : (G/H,R)-Gr → RH -Mod are also inverse equivalences.

If R is strongly graded, then a two-sided ideal I1 of R1 is the 1-component of a G -
graded two-sided ideal I of R if and only if I1 is G-invariant, that is RgI1Rg−1 = I1 for
all g ∈ G .

Recall also that if M ∈ R-Gr then E = ENDR(M)op is strongly graded if and only if
M is weakly G-invariant, that is, M(g) is a direct summand in R-Gr of a finite direct
sum of copies of M for all g ∈ G .
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2. Rigid subcategories of (G/H,R)-Gr and graded Gabriel topologies

2.1. Let H be a subgroup of G .
A class D ⊆ (G/H,R)-Gr will be called rigid if, for every N ∈ D , U(F(N)(g)) ∈ D for

all g ∈ G . (Clearly, here U = UG/1
G/H and F = FG/1

G/H ). In the case of R-Gr, this concept
was introduced in [10, Section 2].

If C ∈ R-Gr is a pretorsion class, we denote by CG/H the smallest pretorsion class of
(G/H,R)-Gr which contains the objects U(M) for M ∈ C .

If D ⊆ (G/H,R)-Gr is a pretorsion free class (that is, it is closed under subobjects
and direct products) we denote by Dgr the smallest pretorsion class R-Gr containing the
objects F(N) for N ∈ D .

2.2. Proposition. Let C ⊆ R-Gr be a rigid pretorsion class
a) We have the equalities:

CG/H = {N ∈ (G/H,R)-Gr | there is an epimorphism U(M) → N for some M ∈ C}
= {N ∈ (G/H,R)-Gr | F(N) ∈ C};

b) If C is a closed (respectively localizing) subcategory then CG/H is also a closed (respec-
tively localizing) subcategory.

Proof. a) Denote by D and D′ the classes defined above. If N ∈ D then there is M ∈ C
and an epimorphism U(M) → N . Then N ∈ CG/H , since U(M) ∈ CG/H and CG/H is
closed under epimorphic images.

Conversely, using the fact that U is exact and commute with direct sums, it is easy to
see that D is a pretorsion class, containing U(M), M ∈ C , hence CG/H ⊆ D .

If N ∈ D′ then F(N) ∈ C and we have the epimorphism ξN : U(F(N)) → N , hence
N ∈ D .

Conversely, if N ∈ D then there is M ∈ C and an epimorphism U(M) → N , and also
an epimorphism F(U(M)) → F(N) in R-Gr. But F(U(M)) =

⊕
h∈H M(h) belongs to

C since C is rigid and closed under direct sums, hence F(N) ∈ C . Finally, CG/H is rigid,
since if N ∈ CG/H then F(N)(g) ∈ C for all g ∈ G , hence U(F(N)(g)) ∈ CG/H .

b) follows immediately from a) and the exactness of F .

2.3. Proposition. Let D ⊆ (G/H,R)-Gr be a rigid pretorsionfree class.
a) We have the equalities:

Dgr = {M ∈ R-Gr | there is an monomorphism M → F(M) for some M ∈ D}
= {M ∈ R-Gr | U(M) ∈ D};

b) If D is a closed (respectively localizing) subcategory then DG/H is also a closed (re-
spectively localizing) subcategory.

Proof. a) Denote by C and C′ the classes defined above. If M ∈ D then there is N ∈ D
and an monomorphism M → F(N). Then M ∈ Dgr , since F(N) ∈ Dgr and Dgr is closed
under subobjects.



10 ANDREI MARCUS AND CIPRIAN MODOI

Conversely, since F is exact and commute with direct products, it follows easily that
C is a pretorsionfree class, containing F(N), M ∈ D , hence Dgr ⊆ C .

If M ∈ C′ then U(M) ∈ D and F(U(M)) ∈ Dgr . Since the ζM : M → F(U(M)) is a
monomorphism, we deduce M ∈ C .

Conversely, if M ∈ C then there is monomorphism M → F(N) for some N ∈ D and
also a monomorphism U(M) → U(F(N)) in (G/H,R)-Gr. But U(U(N)) ∈ D since C
is rigid, hence U(M) ∈ D .

To prove that Dgr is rigid, let M ∈ Dgr and g ∈ G . There is a monomorphism M →
F(N) for some N ∈ D , hence a monomorphism M(g) → F(N)(g). Let M ′ = F(N)(g)
and N ′ = U(M ′). Then N ′ ∈ D since D is rigid and we have the monomorphism
ζM ′ : M ′ → F(U(M ′)) = F(N ′). It follows that we have a monomorphism M(g) → F(N ′)
in R-Gr, hence M(g) ∈ Dgr .

b) follows immediately from a) and the exactness of U .

2.4. Corollary. a) If C is a rigid closed subcategory of R-Gr then (CG/H)gr = C .
b) If D is a rigid closed subcategory of (G/H,R)-Gr then (Dgr)G/H = D

2.5. G/H -graded ideals. In order to associate G/H -graded linear topologies to rigid
closed subcategories of (G/H,R)-Gr, we have to see what a G/H -graded ideal of R
should be.

Let N be a G/H -graded R -module and n ∈ NgH . Then the map UG/1
G/H(R(g−1) →

N r 7→ rn is a homomorphism of G/H -graded R -module, so its kernel is a G/H -
graded submodule of R(g−1). Observe also that if g, g′ ∈ G then UG/1

G/H(R(g−1)) =

UG/1
G/H(R(g′−1)) in (G/H,R)-Gr if and only if Hg = Hg′ .
Denote

LG/H(R) = {LG/H
Hg (R) | g ∈ [H\G]}

where LG/H
Hg (R) is the lattice of G/H -graded submodules of R(g).

We shall write H ⊆ LG/H(R) if H = {HHg | g ∈ [H\G]} and HHg ⊆ LG/H
Hg (R) for all

g ∈ [H\G] , similarly I ∈ H means that there is an g ∈ G such that I ∈ HHg .
Let I ∈ LG/H

Hg (R) and r ∈ R(g′)σH = RσHg′ . Then the definition (I : r) = {b ∈
R | br ∈ I} makes sense if and only if Hg = Hg′ and in this case it is clear that
(I : r) ∈ LG/H

Hσ−1(R), since (I : r) = `R(r + I) in R(g)/I .

2.6. Rigidity. Next we show that if we forget the grading, then the sets LG/H
Hg (R) are

actually equal. More precisely, for each g ∈ G we define a bijection from LG/H
H (R) to

LG/H
Hg (R), sending I to Ig , where I = Ig as subsets of R .

Let I ∈ LG/H
H (R) and g ∈ G . Then R/I ∈ (G/H,R)-Gr and I = `R(1 + I). We

consider the G/H -graded R -module

N = UG/1
G/H(FG/1

G/H(R/I)(g)) =
⊕

σ∈[G/H]

NσH

where NσH =
⊕

h∈H(R/I)σhgH . Setting σ = g−1 , we see that 1 + I appears as an
element of degree g−1H of N , so its left annihlator Ig = I is an element of LG/H

Hg (R).
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If H ⊆ LG/H(R) we say that H is rigid if for each g ∈ G the correspondence I 7→ Ig

gives a bijection from HH to HHg .

2.7. Graded Gabriel topologies. Let H = {HHg | g ∈ [H\G]} ⊆ LG/H(R) with HHg

nonempty for each g ∈ [H\G] .
We say that H is a G/H -graded left linear topology on R if it satisfies the following

conditions:
(1) H is rigid;
(2) HHg is a filter for all g ∈ [H\G] , that is, I ∈ HHg , I ′ ∈ LG/H(R(g)), I ⊆ I ′ ⇒

I ′ ∈ HHg and I, I ′ ∈ HHg ⇒ I ∩ I ′ ∈ HHg ;
(3) I ∈ H , r ∈ h(R) ⇒ (I : r) ∈ H .
If H = 1 the above remarks show that our definition is equivalent to the definition of

a G -graded linear topology given in [10, p. 490].
H is called a G/H -graded left Gabriel topology if it satisfies conditions (1), (2), (3) and
(4) If I ∈ LG/H(R) and there is I ′ ∈ H such that (I : r) ∈ H for all r ∈ h(I ′) then

I ∈ H .
(Note that if I ∈ LG/H

Hg (R) and (I : r) ∈ H for all r ∈ h(I ′) then I ′ ∈ HHg .)

2.8. Next we define correspondences between left graded topologies on R and rigid
subcategories of R-Gr.
(2.8.1) If G is a G -graded left linear (Gabriel) topology on R let

GG/H = {J ∈ LG/H(R) | there is I ∈ G such that I ⊆ J}

(2.8.2) If D is a rigid closed subcategory of (G/H,R)-Gr let

HD = {I ∈ LG/H(R) | R(g)/I ∈ D for some g ∈ G}

(2.8.3) If H is a G/H -graded left linear topology on R let

DH = {N ∈ (G/H,R)-Gr | `R(n) ∈ H for all n ∈ h(N)}

The proof of the next result, where U = UG/1
G/H and F = FG/1

G/H is routine.

2.9. Proposition. a) If G is a G-graded left linear (respectively Gabriel) topology on
R then GG/H is the smallest G/H -graded linear (respectively Gabriel) topology on R

containing U(G) ;
b) The correspondence D 7→ HD and H 7→ DH are bijection between the rigid closed

(respectively localizing) subcategories of (G/H,R)-Gr and the G/H -graded left linear (re-
spectively Gabriel) topologies on R ;

c) If C is the rigid closed subcategory of R-Gr corresponding to the topology G then
CG/H = DGG/H and HCG/H = GG/H ;

2.10. The Gabriel topology determined by an idempotent G-graded ideal. Let
J be a idempotent G -graded two-sided ideal of R and

G = {I ∈ Lgr(R) | J ⊆ I}.
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Then G is a G -graded Gabriel topology on R and

GG/H = {I ∈ LG/H(R) | J ⊆ I}.

It is not difficult to verify (see also [19, Example 3, p.200]) That the following assertion
are true for every N ∈ (G/H,R)-Gr:
(2.10.1) N is GG/H -torsion if and only if JN = 0, or equivalently, J ⊗R N = 0;
(2.10.2) N is GG/H -closed if and only if the canonical morphism N → HOMG/H,R(J,N)
is an isomorphism.

2.11. Let K ≤ H be subgroups of G . Since UG/1
G/H = UG/K

G/H ◦ UG/1
G/K and FG/1

G/H =

UG/1
G/K ◦ FG/K

G/H , the arguments of Propositions 2.2 and 2.3 show that we have the pair

of adjoint functors (UG/K
G/H ,F

G/K
G/H) between CG/H and CG/K where C is a rigid closed

subcategory of R-Gr. Using the fact that U is a separable functor, we easily deduce:

2.12. Proposition. Let C be a rigid closed subcategory of R-Gr .
a) An object P of CG/K is projective in CG/K if and only if U(P ) is projective in

CG/H ;
b) If a object M of CG/K is a generator of CG/K then U(M) is a generator of CG/H .

2.13. Proposition. Let K ≤ H be subgroups of G , C be a rigid closed subcategory of
R-Gr , M ∈ (G/K,R)-Gr and N ∈ (G/H,R)-Gr .

a) If M is CG/K -torsionfree then U(M) is CG/H -torsionfree;
b) If N is CG/H -torsionfree then F(N) is CG/K -torsionfree;
c) If M is CG/K -injective and H/K is finite then U(M) is CG/H -injective;
d) If N is CG/H -injective then F(N) is CG/K -injective;
e) tG/H(UG/K

G/H(M)) = UG/K
G/H(tG/K(M)) .

Proof. a) We have that tCG/K (M) = M , so U(tCG/K (M)) = U(M). But U(tCG/K (M))
belongs to CG/H , hence tCG/H (U(M)) = U(M).

b) Let X ∈ CG/K . Then Hom(G/K,R)-Gr(X,F(N)) ∼= Hom(G/H,R)-Gr(U(X), N) = 0
since U(X) ∈ CG/H . Consequently, F(N) is CG/K -torsion free.

c) and d) are easy consequences of the adjunction and of the fact that U and F
preserves torsion objects.

e) Let G be the G -graded linear topology corresponding to C . Then

GG/H = {I ∈ LG/H(R) | there is I ∈ GG/K such that I ⊆ J},

since we may take I to be a G -graded ideal. Now the argument of [10, Proposition 2.2]
applies.

2.14. Adjoint functors between quotient categories. As in [16, Propositions 4.3 –
4.8] we may consider the following “relative situation”. As our functor F = FG/K

G/H and

U = UG/K
G/H satisfy all needed properties, the proof of the following statements are the

same as in [16].
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Let AG/K and CG/K be two rigid closed subcategories of (G/K,R)-Gr such that
CG/K ⊆ AG/K . We have seen that if CG/K is a localizing subcategory of AG/K then
CG/H is a localizing subcategory of AG/H . Assume that this is the case. The functors U
and F induce by restriction the functors

AG/K
U // AG/H
F

oo and CG/K
U // CG/H .
F

oo

Consider the canonical functors

AG/K
aG/K

// AG/K/CG/K

iG/K

oo and AG/H
aG/H

// AG/H/CG/H

iG/H

oo ,

and define the functors

AG/K/CG/K
U // AG/H/CG/H

F

oo

by U = aG/H ◦U ◦ iG/K and F = aG/K ◦ F ◦ iG/H .
These functors have the following properties:

(2.14.1) F is a right adjoint of U and commute with direct sums;
(2.14.2) U ◦ aG/K = aG/H ◦U ;
(2.14.3) U and F are exact;
(2.14.4) If M ∈ AG/K/CG/K is projective (generator, small) then U(M) is projective
(generator, small) in AG/H/CG/H .

2.15. Rigid subcategories of (G/H,R)-Gr . If C = R-Gr then clearly CG/H =
(G/H,R)-Gr. Let M be a G -graded R -module and denote M̃ =

⊕
g∈GM(g). We

shall consider several rigid full subcategories C of R-Gr associated with M and the cor-
responding rigid subcategories CG/H of (G/H,R)-Gr. Again U means UG/1

G/H .

• If C = σgr[M ] = σ[M̃ ] then CG/H = σG/H [M ] = σ[U(M̃)] ;
• If C = Gengr[M ] = Gen[M̃ ] then CG/H = GenG/H [M ] = Gen[U(M̃)] ;
• If C = Presgr[M ] = Pres[M̃ ] then CG/H = PresG/H [M ] = Pres[U(M̃)] .
By Proposition 2.12 it follows that M is projective in σgr[M ] if and only if it is

projective in σG/H [M ] , or equivalently, M is a Σ-quasiprojective R -module. We also
have that if M̃ is a generator of σgr[M ] , then M̃ is a generator of σG/H [M ] .

Since for every g ∈ G , HOMG/H,R(M,N)gH = Hom(G/HR)-Gr(M(g−1, N), we obtain
that

Im ρ
G/H
N =

∑
{Im f | f ∈ HOMG/H,R(M,N)}

where ρG/H
N is defined in 1.10. This implies that

GenG/H [M ] = {N ∈ (G/H,R)-Gr | ρG/H
N is an epimorphism }.

2.16. Σ-quasiprojective module. Assume in adition that the G -graded R -module M
is Σ-quasiprojective. Let T = T gr[M ] be as in 1.6 the torsion class consisting of objects
M ′ ∈ R-Gr satisfying HomR-Gr(M̃,M ′) = 0. Since

HomR-Gr(M̃,M ′) =
∏
g∈G

HomR-Gr(M(g−1),M ′) =
∏
g∈G

HomR-Gr(M,M ′)g,
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we have that M ′ ∈ T if and only if HOMR(M,M ′) = 0. That implies that T is rigid,
since HOMR(M,M ′(g)) = HOMR(M,M ′)(g) for all g ∈ G .

We claim that

T G/H = {N ∈ σG/H [M ] | HOMG/H,R(M,N) = 0}.

Indeed, by Proposition 2.3 a) and Corollary 2.4, it is enough to show that for any M ′ ∈
σgr[M ] , M ′ ∈ T if and only if HOMG/H,R(M,U(M ′)) = 0. But this follows immediately
from 1.12. Moreover, since by 1.5

Hom(G/H,R)-Gr(M̃,N) =
∏
g∈G

Hom(G/H,R)-Gr(M(g−1), N)

=
∏
g∈G

Hom(G/H,R)-Gr(M(g−1,M)gH ,

we have that N ∈ T G/H if and only if Hom(G/H,R)-Gr(M̃,N) = 0, that is, T is the torsion
theory on σgr[M ] determined by M̃ . Finally, note that by [12, Theorem 3.7], N ∈ T G/H

if and only if HomR(M,N) = 0.
These arguments also show that for the corresponding torsionfree class we have that

for any N ∈ σgr[M ] , N is M̃ -faitful if and only if

XM 6= 0 for every non zero subobject X of N

⇔ Hom(G/K,R)-Gr(M̃,X) 6= 0 for every non zero subobject X of N

⇔ HOMG/K,R(M,X) 6= 0 for every non zero subobject X of N

⇔ HomR(M,X) 6= 0 for every non zero subobject X of N.

We shall also consider the following categories associated to M :
• If C = Cgr[M ] = σgr[M ]/T gr (which can be identified with the full subcategory

of σgr[M ] consisting of T -closed objects), then CG/H = CG/H [M ] = σG/H [M ]/T G/H

with the similar identification. By 2.14 it follows that we have the pair (U,F) of adjoint
functors between CG/K and CG/H .
• If C = GFgr[M ] = GF[M̃ ] is the full subcategory of σgr[M ] consists of M̃ -generated,

T -torsionfree objects, then again CG/H = GFG/H [M ] = GF[U(M̃)] . Again we have the
adjoint pair (U,F) between GFG/K [M ] and GFG/H [M ] .

2.17. The graded Gabriel topology on E . The G -graded Σ-quasiprojective module
M determines a Gabriel topology on S = EndR(M)op . If we denote by JS the two-sided
ideal of S consisting of the endomorphisms which factor through a finitely generated R -
submodule of M , then by [7, Theorem 1.3], JS is an idempotent ideal, MJS = M and
the associated Gabriel topology GS consists of left ideals I of S satisfying MI = M .

Let E = ENDR(M) and J = E ∩ JS . The next lemma and 2.10 show that

Ggr = {I ∈ Lgr(R) | J ⊆ I} = {I ∈ Lgr(R) |MI = M}

is a G -graded Gabriel topology on E . It also follows that if H is a subgroup of G , then

GG/H = {I ∈ LG/H(R) | J ⊆ I} = {I ∈ LG/H(R) |MI = M}

is a G/H -graded left Gabriel topology on E .
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2.18. Lemma. Let A be a subring of S containing E . Then the following statements
hold.

a) J is an G-graded idempotent two-sided ideal of E ;
b) JA = E ;
c) M ⊗E A ∼= M .

Proof. a) Let α =
∑n

i=1 αgi
∈ J with αgi

∈ E , and let M ′ be a finitely generated
R -submodule of M such that Imα ⊆ M ′ . Replacing the generators of M ′ by their
homogeneous components, we may assume that M ′ is a G -graded submodule of M . Let
m ∈ M be a homogeneous element. Then αgi

(m) ∈ M are also homogeneous, and since
α(m) =

∑n
i=1 αgi(m) ∈M ′ , it follows that Imαgi ⊆M ′ , that is, αgi ∈ J , 1 ≤ i ≤ n .

The remaining statements are proved as in [9, Theorem 2.1] and [7, Theorem 1.3], but
working with homogeneous elements and grade preserving maps.

b) Let α ∈ J and β ∈ A . Thus we have the commutative diagram:

M
α //

α′

!!CC
CC

CC
CC

M
β // M

M ′

q
=={{{{{{{{

with M ′ a G -graded finitely generated R -submodule of M . Since M ′ is finitely gen-
erated, β ◦ q ∈ HomR(M ′,M) = HOMR(M ′,M) thus αβ = β ◦ α = β ◦ q ◦ α′ ∈
HOMR(M,M) = E .

c) We have the natural homomorphisms µ : M ⊗E A → M , µ(m ⊗ β) = mβ = β(m)
and ν : M →M⊗EA , ν(m) = m⊗1. Then (µ◦ν)(m) = m , and for any m⊗β ∈M⊗EA

we can find mi ∈ M and αi ∈ J , 1 ≤ i ≤ n , such that
∑n

i=1miαi = m (for MJ = M ).
Consequently,

(ν ◦ µ)(m⊗ β) = ν(mβ) = mβ ⊗ 1 =
n∑

i=1

miαiβ ⊗ 1

=
n∑

i=1

mi ⊗ αiβ =
n∑

i=1

miαi ⊗ β = m⊗ β,

so ν is the inverse of µ .

3. Σ-quasiprojective modules and equivalences

3.1. In this section we shall use the notations and assumptions of 2.15 – 2.18. Recall that
H is a subgroup of G , M is a G -graded Σ-quasiprojective R -module, M̃ =

⊕
g∈GM(g),

E = ENDR(M)op , and J is the idempotent G -graded two-sided ideal of E consisting
of endomorphisms which factor trough a (G -graded) finitely generated submodule of M .
Then M determines the (hereditary) torsion class T G/H ⊆ σG/H [M ] as in 2.16, and the
G/H -graded left Gabriel topology GG/H on E as in 2.17.

Before proving our main results, we need several lemmas.
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3.2. Lemma. The functor HOMG/H,R(M,−) : σG/H [M ] → (G/H,E)-Gr is exact.

Proof. For any g ∈ G , M(g) is projective in σG/H [M ] since it is a direct summand of
M̃ . Applying the exact functor Hom(G/H,R)-Gr(M(g−1),−) to an exact sequence 0 →
N ′ → N → N ′′ → 0 from σG/H [M ] , and using 1.9 we obtain the exact sequence

0 → HOMG/H,R(M,N ′) → HOMG/H,R(M,N) → HOMG/H,R(M,N ′′) → 0

in (G/H,E)-Gr, which proves the lemma.

3.3. Lemma. a) Mn ∈ StatG/H [M ] for all nonnegative integers n ;
b) PresG/H [M ] = StatG/H [M ] ;
c) AdstG/H [M ] = Im HOMG/H,R(M,−) ;
d) Let N ∈ (G/H,R)-Gr , X = HOMG/H,R(M,N) ∈ (G/H,E)-Gr and denote

(ρG/H
N )∗ = HOMG/H,R(M,ρ

G/H
N ).

Then η
G/H
X and (ρG/H

N )∗ are isomorphisms inverse to each other;
e) Let X ∈ (G/H,E)-Gr , N = M ⊗E X ∈ (G/H,E)-Gr and denote

(ηG/H
X )∗ = M ⊗E η

G/H
X .

Then ρ
G/H
N and (ηG/H

X )∗ are isomorphisms inverse to each other;
f) If N ∈ σG/H [M ] , then ρ

G/H
N has torsion kernel and cokernel.

Proof. a) It is clear that we can apply Lemma 2.18 with A = HOMG/H,R(M,M), so we
have the natural isomorphisms M ⊗E HOMG/H,R(M,Mn) ∼= M ⊗E HOMG/H,R(M,M)n ,
that is, Mn ∈ StatG/H [M ] for all n .

b) The fact that M (Λ) ∈ Stat[M ] for any set Λ follows by the argument used in [9,
Theorem 2.1], observing that the homomorphism s considered there is actually graded of
degree one in our case. This and Lemma 3.2 implies that PresG/H [M ] ⊆ StatG/H [M ] .
Observe that the other inclusion always holds, since

Stat[M ] ⊆ ImM ⊗E HOMG/H,R(M,−) ⊆ PresG/H [M ].

c) follows from b) using [4, Theorem 1.6].
d) By c) we have that X = HOMG/H,R(M,N) ∈ AdstG/H [M ] , hence η

G/H
X is an

isomorphism. From the adjunction we obtain (ρG/H
N )∗ ◦ ηG/H

X = 1X , hence (ρG/H
N )∗ is

the inverse of ηG/H
X .

e) is the dual of d).
f) For any N ∈ σG/H [M ] we have the exact sequence

0 → Ker ρG/H
N →M ⊗E HOMG/H,R(M,N)

ρ
G/H
N−→ N → Coker ρG/H

N → 0.

in (G/H,R)-Gr. Applying the exact functor HOMG/H,R(M,−), and having in the mind
that (ρG/H

N )∗ is an isomorphism, it follows that HOMG/H,R(M,Ker ρG/H
N ) = 0, that is

Ker ρG/H
N belongs to T G/H . For the cokernel, it is enough to observe that Coker ρG/H

N =
N/ Im ρ

G/H
N , Im ρ

G/H
N = NM̃ , and the torsion theory class T G/H [M ] is generated by the

objects N/NM̃ with N ∈ σG/H [M ] .
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3.4. Lemma. If g ∈ G and I is a G/H -graded left ideal of E(g) , then the induced
homomorphism M ⊗E I →M(g) has torsion kernel in σG/H [M ] .

Proof. First assume that I is G -graded. We claim that

ηgr
I : I → HOMR(M,M ⊗E I)

is an isomorphism. Indeed we have the commutative diagram

0 // I //

ηgr
I

��

E(g)

ηgr
E(g)

��
HOMR(M,M ⊗E I) // HOMR(M,M ⊗E E(g))

with first row exact, and since HOMR(M,M ⊗E E(g)) ∼= HOMR(M,M(g)) ∼= E(g), it
follows that ηgr

I is a monomorphism.
Since I is finitely generated, it follows that there is an epimorphism

⊕
h∈Gf

E(h)kh →
I , for some finite subset Gf of G and some natural numbers kh, h ∈ Gf . Since the
functor HOMR(M,M ⊗E −) is exact, we obtain the commutative diagram

⊕
h∈Gf

E(h)kh //

��

I //

ηgr
I

��

0

HOMR(M,M ⊗E (
⊕

h∈Gf
E(h)kh)) // HOMR(M,M ⊗E I) // 0

with exact rows. Moreover,

HOMR(M,M ⊗E (
⊕

h∈Gf

E(h)kh)) ∼=
⊕

h∈Gf

(HOMR(M, (M ⊗E E)(h)))kh ∼=
⊕

h∈Gf

E(h)kh ,

so ηgr
I is an epimorphism and our claim follows.

Now let K = Ker(M ⊗E I → M(g)) for I a G -graded finitely generated ideal of
E(g). The first diagram shows that HOMR(M,K) = 0, that means, K ∈ T gr . Thus
UG/1

G/H(K) ∈ T G/H for every H ≤ G .
Finally, let I be a G/H -graded left ideal of E(g) as in the hypothesis of the lemma.

We may write I =
∑

λ∈Λ Iλ , where {Iλ | λ ∈ Λ} is the set of all (ungraded) finitely
generated subideals of I . For λ ∈ Λ, the set of G -homogeneous components of a finite
set of generators of Iλ is finite too, and this set generates a G -graded left ideal, say I ′λ ,
containing Iλ . This means that the set of finitely generated G -graded left subideals of I is
cofinal in {Iλ | λ ∈ Λ} , so I =

∑
λ∈Λ I

′
λ . If Kλ denotes the kernel of the homomorphism

M ⊗E I ′λ → M(g), λ ∈ Λ, then we already have seen that Kλ ∈ T G/H . Since direct
limits are exact, we have the isomorphism Ker(M ⊗E I → M(g)) ∼=

∑
λ∈ΛKλ , hence

Ker(M ⊗E I →M(g)) ∈ T G/H .
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3.5. Lemma. Let X → Y be a monomorphism in (G/H,E)-Gr . Then the induced
homomorphism M ⊗E X →M ⊗E Y has torsion kernel in σG/H [M ] .

Proof. By standard arguments as in [18, Propositions 10.4 and 10.6] we see that this lemma
is actually equivalent to the previous one and to the statement that HOMG/H,R(M,Q)
is an injective object of (G/H,R)-Gr, where Q is an arbitrary injective cogenerator of
torsion theory (T G/H ,FG/H).

3.6. Lemma. The G-graded (R,E)-bimodules M ⊗E J and M are isomorphic.

Proof. The image of the canonical homomorphism µ : J⊗EM →M is MJ and MJ = M ,
so µ is surjective. But µ is induced by the monomorphism 0 → J → E , hence its
kernel K is torsion. The projectivity of M in σG/H [M ] implies that the short exact
sequence 0 → K → M ⊗E J → M → 0 splits, and K , as an epimorphic image of
M ⊗E J ∈ GenG/H [M ] , belongs to GenG/H [M ] . Consequently, K = 0 and µ is an
isomorphism.

3.7. Lemma. If X is a G/H -graded E -module, then the following are equivalent:

(i) X is GG/H -torsion;
(ii) J ⊗E X = 0 ;
(iii) M ⊗E X = 0 .

Proof. (i)⇒(ii) Let α⊗ x ∈ J ⊗E X . Since J is idempotent we can find βi, γi ∈ J such
that α =

∑n
i=1 βiγi . Then α⊗x =

∑n
i=1 βiγi⊗x =

∑n
i=1 βi⊗γix = 0, hence J⊗EX = 0.

(ii)⇒(iii) By Lemma 3.6 we have that M ⊗E X ∼= M ⊗E J ⊗E X = M ⊗E 0 = 0.
(iii)⇒(i) First, we shall show that M ⊗E X ′ = 0 for all subobjects X ′ of X in

(G/H,R)-Gr. Indeed, if X ′ is such a subobject, then

M ⊗E X ′ = Ker(M ⊗E X ′ → 0) = Ker(M ⊗E X ′ →M ⊗E X)

belongs to T G/H , and clearly M ⊗E X ′ ∈ GenG/H [M ] , hence M ⊗E X ′ = 0.
Now let x ∈ Xg−1H . Since `R(x) ∈ LG/H

Hg (R), we obtain the short exact sequence

0 → `R(x) → E(g) → Ex→ 0.

Since Ex is a subobject of X , we have M ⊗E Ex = 0, hence the above exact sequence
induce an epimorphism M ⊗E `R(x) →M(g). On the other hand, the image of the map
M ⊗E `R(x) →M(g) is M`R(x), so M = M`R(x) and `R(x) ∈ GG/H .

3.8. Lemma. The functor HOMG/H,R(M,−) : (G/H,R)-Gr → (G/H,E)-Gr factors
through the inclusion (G/H,E,GG/H)-Gr → (G/H,E)-Gr .

Proof. Let N ∈ (G/H,R)-Gr. By Lemmas 1.11 and 3.6 we have the canonical isomor-
phisms

HOMG/H,E(J,HOMG/H,R(M,N)) ∼= HOMG/H,R(M ⊗E J,N) ∼= HOMG/H,R(M,N),

and by 2.10 this means that HOMG/H,R(M,N) is GG/H -closed.
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3.9. Theorem. The functor HOMG/H,R(M,−) : (G/H,R)-Gr → (G/H,E)-Gr restricts
to the following equivalences of categories:

a) PresG/H [M ] → (G/H,E,GG/H)-Gr with inverse M ⊗E − ;
b) GFG/H [M ] → (G/H,E,GG/H)-Gr with inverse M ⊗E − ;
c) CG/H [M ] → (G/H,E,GG/H)-Gr with inverse aG/H ◦ (M ⊗E −) .

Proof. a) We have seen that the functors HOMG/H,R(M,−) and M⊗E− are well defined
between PresG/H [M ] and (G/H,E,GG/H).

Let N ∈ PresG/H [M ] . Then ρ
G/H
N : M ⊗E HOMG/H,R(M,N) → N is an isomorphism

by Lemma 3.3 b). Let X ∈ (G/H,E,GG/H)-Gr and put K = Ker ηG/H
X , C = Coker ηG/H

X .
Tensoring with M the exact sequence

0 → K → X
η

G/H
X−→ HOMG/H,R(M,M ⊗E X) → C → 0

we obtain the exact sequence

M ⊗E X
(η

G/H
X )∗−→ M ⊗E HOMG/H,R(M,M ⊗E X) →M ⊗E C → 0.

By Lemma 3.3 d), (ηG/H
X )∗ is an isomorphism, hence M ⊗E C = 0, so by Lemma 3.7,

C is GG/H torsion. Moreover, the induced homomorphism M ⊗E K →M ⊗E X is zero,
hence M ⊗E K = Ker(M ⊗E K →M ⊗E X) belongs to T G/H . On other hand, it is clear
that M ⊗E K ∈ GenG/H [M ] , so M ⊗E K = 0, and again by Lemma 3.7, K is GG/H

torsion.
b) We can use the same argument as [7, Theorem 1.3 (ii)], replacing HomR(−,−) with

HOMG/H,R(−,−).
c) We have the diagram of categories and functors

σG/H [M ]

xxppppppppppp
a

&&LLLLLLLLLL

PresG/H [M ]
a◦j //

j
88ppppppppppp

CG/H [M ]
M⊗EHOMG/H,R(M,−)
oo

i

ffLLLLLLLLLL

where i = iG/H , j = jG/H are the corresponding inclusion functors and a = aG/H is the
canonical adjoint of i . We claim that on the row we have equivalences inverse to each other.
In order to prove that, observe first that the functor M⊗EHOMG/H,R(M,−) : σG/H [M ] →
PresG/H [M ] is the right adjoint of the inclusion j , that is PresG/H [M ] is a reflective
subcategory of σG/H [M ] . Indeed, Lemma 3.3 gives the natural isomorphisms

Hom(G/H,R)-Gr(N,M ⊗E HOMG/H,R(M,L))
∼= Hom(G/H,R)-Gr(M ⊗E HOMG/H,R(M,N),M ⊗E HOMG/H,R(M,L))
∼= Hom(G/H,E)-Gr(HOMG/H,R(M,N),HOMG/H,R(M,L)),

Hom(G/H,R)-Gr(N,L) ∼= Hom(G/H,R)-Gr(HOMG/H,R(M,N), L)
∼= Hom(G/H,E)-Gr(HOMG/H,R(M,N),HOMG/H,R(M,L)
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for every N ∈ PresG/H [M ] and every L ∈ σG/H [M ] . Moreover, the reflector M ⊗E

HOMG/H,R(M,−) is right exact between σG/H [M ] and itself. Since the inclusion j is also
right exact, this implies that the reflector is exact between σG/H [M ] and PresG/H [M ] .
Thus, by the duals of [13, 5.1, 5.2, 5.3, Chapter V], we have that
• PresG/H [M ] is abelian;
• A morphism in PresG/H [M ] is epimorphism in PresG/H [M ] if and only if it is

epimorphism in σG/H [M ] ;
• A morphism in PresG/H [M ] is monomorphism in PresG/H [M ] if and only if the

functor M ⊗E HOMG/H,R(M,−) maps its kernel to zero in σG/H [M ] .
Note that for N ∈ σG/H [M ] , the equality M ⊗E HOMG/H,R(M,N) = 0 im-

plies that HOMG/H,R(M,N) is GG/H -torsion and, since it is always torsionfree (even
closed), we have that HOMG/H,R(M,N) = 0. Since the converse is obvious, M ⊗E

HOMG/H,R(M,N) = 0 if and only if N ∈ T G/H . In addition, the functor M ⊗E

HOMG/H,R(M,−) : σG/H [M ] → PresG/H [M ] is left exact, since it is a right adjoint of j ,
and also right exact by the above argument.

The inclusion functor j is obviously fully-faithful, so by [18, 13.11, Chapter I] it follows
that PresG/H [M ] is equivalent to the category of fractions of σG/H [M ] relative to the
system

Σ = {f ∈ Hom σG/H [M ] |M ⊗E HOMG/H,R(M,f) is invertible in PresG/H [M ]}.

To prove our claim, it is now enough to show that

Σ = {f ∈ Hom σG/H [M ] | Ker f,Coker f ∈ T G/H}.

Indeed, let f ∈ Hom(G/H,R)-Gr(N,L) with N,L ∈ σG/H [M ] and Ker f,Coker f ∈ T G/H .
The exact sequence

0 → Ker f → N
f−→ L→ Coker f → 0

induce the exact sequence in PresG/H [M ]

0 →M ⊗E HOMG/H,R(M,Ker f) →M ⊗E HOMG/H,R(M,N)
f∗∗−→

M ⊗E HOMG/H,R(M,L) →M ⊗E HOMG/H,R(M,Coker f) → 0,

where f∗∗ denotes the homomorphism M ⊗E HOMG/H,R(M,f). Since

M ⊗E HOMG/H,R(M,Ker f) = M ⊗E HOMG/H,R(M,Coker f) = 0

in σG/H [M ] , this equality holds in PresG/H [M ] too, and f∗∗ is an isomorphism in
PresG/H [M ] .

Conversely, suppose that f∗∗ is an isomorphism in PresG/H [M ] . Since this is a full
subcategory of σG/H [M ] it follows that f∗∗ is isomorphism in σG/H [M ] too. The exact
sequence in σG/H [M ]

M ⊗E HOMG/H,R(M,N)
f∗∗−→M ⊗E HOMG/H,R(M,L) →

M ⊗E HOMG/H,R(M,Coker f) → 0
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shows that M ⊗E HOMG/H,R(M,Coker f) = 0 in σG/H [M ] , that is, Coker f ∈ T G/H .
The Ker-Coker lemma for the diagram

0 // M ⊗E HOMG/H,R(M,N)
f∗∗ //

ρ
G/H
N

��

M ⊗E HOMG/H,R(M,L) //

ρ
G/H
L

��

0

0 // Ker f // N
f // L

implies that there is an exact sequence

Ker ρG/H
L → Ker f → Coker ρG/H

N .

But by Lemma 3.3 f), Ker ρG/H
L and Coker ρG/H

N belong to T G/H , hence Ker f ∈ T G/H ,
and this completes the proof of our claim.

Composing this equivalences with those obtained in a), and using the fact that (ρG/H
N )∗

is an isomorphism for all N ∈ σG/H [M ] , we obtain the desired equivalence between
CG/H [M ] and (G/H,E,GG/H)-Gr.

3.10. Note that the above diagram of categories and functors in not necessarily commu-
tative, since the functors i ◦ a ◦ j and j are not necessarily isomorphic.

3.11. Corollary. Let K ≤ H ≤ G be two subgroups, and let GG/K and GG/K the G/K
(respectively G/H )-graded left topologies considered in Theorem 3.9. Then there are the
following commutative diagram of categories and functors:

a)

PresG/K [M ]
HOMG/K,R(M,−)

//

U
G/K

G/H

��

(G/K,E,GG/K)-Gr
M⊗E−

oo

U
G/K

G/H

��
PresG/H [M ]

HOMG/K,R(M,−)
//

F
G/K

G/H

OO

(G/H,E,GG/H)-Gr
M⊗E−

oo

F
G/K

G/H

OO

b)

GFG/K [M ]
HOMG/K,R(M,−)

//

U
G/K

G/H

��

(G/K,E,GG/K)-Gr
M⊗E−

oo

U
G/K

G/H

��
GFG/H [M ]

HOMG/K,R(M,−)
//

F
G/K

G/H

OO

(G/H,E,GG/H)-Gr
M⊗E−

oo

F
G/K

G/H

OO

c)

CG/K [M ]
HOMG/K,R(M,−)

//

U
G/K

G/H

��

(G/K,E,GG/K)-Gr
aG/K◦(M⊗E−)

oo

U
G/K

G/H

��
CG/H [M ]

HOMG/K,R(M,−)
//

F
G/K

G/H

OO

(G/H,E,GG/H)-Gr
aG/H◦(M⊗E−)

oo

F
G/K

G/H

OO
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Proof. a) Let N ∈ PresG/K [M ] . We have the short exact sequence

0 → HOMG/K,R(M,N) → HOMG/H,R(M,N) → C → 0

in (G/H,E)-Gr for C = CokerHOMG/K,R(M,N) → HOMG/H,R(M,N). Tensoring
with M , and having in the mind that by Theorem 3.9, M ⊗E HOMG/K,R(M,N) ∼=
N ∼= M ⊗E HOMG/H,R(M,N), we obtain that M ⊗E C = 0, hence C is GG/H -torsion.
Consequently, in (G/H,E,GG/H)-Gr we have the isomorphism

UG/K
G/H(HOMG/K,R(M,N)) ∼= HOMG/H,R(M,UG/K

G/H(N)).

Since the rows are equivalences, FG/K
G/H is the right adjoint of UG/K

G/H and FG/K
G/H is the

right adjoint of UG/K
G/H , it is clear that the diagram commutes.

b) By Theorem 3.9 every object of GFG/K [M ] can be regarded as N̄ for a suitable
N ∈ PresG/K [M ] . Since HOMG/K,R(M,N) ∼= HOMG/K,R(M, N̄), we have by a) the
isomorphisms

UG/K
G/H(HOMG/K,R(M, N̄)) ∼= UG/K

G/H(HOMG/K,R(M,N)) ∼= HOMG/H,R(M,UG/K
G/H(N))

in (G/H,E,GG/H)-Gr.
On the other hand, by 2.13 d), tG/H(UG/K

G/H(N)) = UG/K
G/H(tG/H(N)) so

HOMG/H,R(M,UG/K
G/H(N̄)) ∼= HOMG/H,R(M,UG/K

G/H(N)).

Again, this is enough for the commutativity of the diagram.

c) Let X ∈ (G/H,E,GG/H)-Gr. By a) we have the isomorphism M ⊗E UG/K
G/H(X) ∼=

UG/K
G/H(M ⊗E X), since both members belong to PresG/K [M ] . On the other hand, using

(2.14.2), we obtain

(UG/K
G/H ◦ aG/K)(M ⊗E X) ∼= (aG/H ◦UG/K

G/H)(M ⊗E X) ∼= aG/H(M ⊗E UG/K
G/H(X)),

so the diagram is commutative.

3.12. Theorem. Let S = EndR(M) , GS = {I ∈ L(S) | JS ⊆ I} as in 2.17, and let ϕ∗

and ϕ∗ denote the restriction, respectively the extension of scalars induced by the inclusion
ϕ : E → S . Then

a) S is isomorphic to the ring of the quotients of E with respect the topology GG/G ;
b) There is the following commutative diagram of categories and functors

PresG/G[M ]
HomR(M,−) // (E,GG/G)-Mod

M⊗E−
oo

ϕ∗

��
Pres[M ]

HomR(M,−) // (S,G)-Mod,
M⊗S−

oo

ϕ∗

OO
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where ϕ∗ and ϕ∗ are the induced functor between the quotient categories.

Proof. a) Regarding S as an object of E-Mod, we have the short exact sequence of E -
modules

0 → E
ϕ−→ S → Cokerϕ→ 0,

which induces the exact sequence in R-Mod

M ⊗E E →M ⊗E S →M ⊗E Cokerϕ→ 0.

By 2.18, we have that M ⊗E E ∼= M ∼= M ⊗E S , so M ⊗E Cokerϕ = 0, hence Cokerϕ
is GG/G -torsion. Moreover, S = HomR(M,M) is GG/G -closed by Lemma 3.8, hence [3,
Lemma 2.6] implies our statement.

b) The fact that the second row is an equivalence is just [7, Theorem 1.3 a)]. If
N ∈ Pres[M ] , then we have the natural S -homomorphisms

φN : HomR(M,N) → S ⊗E HomR(M,N), φ(f) = 1⊗ f

ψN : S ⊗E HomR(M,N) → HomR(M,N), ψN (α⊗ f) = αf = f ◦ α.

We have that ψN ◦ φN = 1HomR(M,N) , so φN is an monomorphism. Moreover, CokerφN

is GS -torsion. Indeed the argument given in Corollary 3.11 shows that M ⊗S C = 0, and
by an argument similar to that in Lemma 3.7, this implies that C ∈ G . Thus φN is an
isomorphism in (S,GS)-Mod.

We also have that HomR(M,N) is G -closed, hence it is isomorphic in (S,GS)-Mod
to its module of quotients. By the definition of the functor ϕ∗ , ϕ∗(HomR(M,N)) ∼=
HomR(M,N), and the diagram commutes.

4. Applications and examples

4.1. We continue to use the notations and assumptions of 3.1. Observe that M is finitely
generated if and only if J = E , and in this case we have that E = S . This situation was
discussed in [11, Theorem 3.12]. In particular if M is a progenerator of R-Mod we obtain
a graded Morita equivalence between R and S .

4.2. If M is a simple object of R-Gr, then E = S and M is projective generator of
σ[M ] , hence σ[M ] is equivalent with E-Mod. This is the main result of [5], the so called
“direct Clifford theorem”. This was generalized in [10, Corollary 2.11] to the case when
M is semisimple in R-Gr, but with S instead of E .

4.3. Assume that E is strongly graded. Then we know that J1 is a G -invariant two-sided
ideal of E1 , and we claim that it is also idempotent.

Indeed, if α ∈ J1 , then α =
∑n

i=1 βiγi for some βi, γi ∈ J , and we may clearly assume
that βi, γi are homogeneous. Fix i and assume that βi ∈ Eg , so γi ∈ Eg−1 . Since
Eg−1Eg = E1 , we can find ε′j ,∈ Eg−1 , εJ ∈ Eg 1 ≤ j ≤ M such that

∑m
j=1 ε

′
jεj =

1. It follows that βiε
′
j , εjγi ∈ E1 and βiγi =

∑m
j=1(βiε

′
j)(γiεj), and our claim follows

immediately.
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Similarly, JH is a idempotent ideal of EH for every subgroup H of G . The functors
E ⊗EH

− and (−)H give an equivalence between (G/H,E)-Gr and EH -Mod, so for a
G/H -graded module X we have a natural isomorphism X ∼= E ⊗EH

X , and similar
statements hold for right modules. In particular we have that

M ⊗E X ∼= M ⊗EH
X.

Moreover, the natural homomorphism X → HOMG/H,E(J,X) of G/H -graded E -
modules comes, via the functor E ⊗EH

− , from a unique homomorphism XH →
HomEH

(JH , XH) of EH -modules. From these observations we obtain:
The set

GH = {I ∈ L(EH) | JH ⊆ I} = {I ∈ L(EH) |MI = M}

is a left Gabriel topology on EH and we have the commutative diagram

PresG/H [M ]
HOMG/K,R(M,−)

// (G/H,E,GG/H)-Gr
M⊗E−

oo

(−)H

��
PresG/H [M ]

Hom(G/H,R)-Gr(M,−)
// (EH ,GH)-Mod

E⊗EH
−

OO

M⊗EH
−

oo

where all the arrows are equivalences.
If R is also strongly graded, then we obtain the commutative diagram:

PresG/H [M ]
HOMG/K,R(M,−)

//

(−)H

��

(G/H,E,GG/H)-Gr
M⊗E−

oo

(−)H

��
Pres[MH ]

HomRH
(MH ,−)

//

R⊗RH−

OO

(EH ,GH)-Mod

E⊗EH
−

OO

MH⊗EH
−

oo

Similar statements are true if we replace Pres with C or GF.

4.4. Our results generalize [3, Theorems 4.8, 4.12 and 4.15], which were obtained in
the case when M is the canonical generator

⊕
g∈GR(g) of R-Gr (actually only the

relationship between the categories R-Mod, R-Gr, E-Mod and E-Gr was considered
there). Indeed, it is enough to observe that our ideal J coincide with the ideal τ(U)
introduced in [3, p. 141].

Theorem 3.9 and Corollary 3.11 above should also be compared with the results of [15,
Sections 2 and 3], but strictly speaking it does not generalize them. The point is that in
the particular case of M =

⊕
g∈GR(g), the ring E can be canonically identified with a

ring of matrices with elements in R , and it contains a G -graded subring R{G} , which
coincides with E if and only if the group G is finite. This subring still retains the essential
information about E , and can be obtain equivalences which are similar to Theorem 3.12.
This approach was generalized in a different direction by G. Abrams and C. Menini [1].
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4.5. Assume that the ideal J is pure (see 1.4). We know that the localizing subcategory
corresponding to the G/H -graded topology GG/H is

KG/H = {X ∈ (G/H,E)-Gr | JX = 0}.

Denote also
JG/H = {X ∈ (G/H,E)-Gr | JX = X}.

Using an appropriate graded version of [2, Theorem 1.6] (which can be easily deduced)
we obtain that JG/H is a localizing subcategory of (G/H,E)-Gr and there are category
equivalences

(G/H,E)-Gr/JG/H ∼= (G/H,E/J)-Gr ∼= KG/H

and
(G/H,E,GG/H)-Gr ∼= (G/H,E)-Gr/KG/H ∼= JG/H .

If moreover one can write J =
∑

λ∈Λ pλE , where {pλ | λ ∈ Λ} is a nonempty set of
orthogonal idempotents in E1 , then JG/H is equivalent to the category (G/H, J)-Gr of
G/H -graded unital J -module.

If in addition E is strongly graded, then (G/H,E,GG/H)-Gr is equivalent to JH -Mod.
Note that all the assumptions made here are satisfied if M =

⊕
g∈GR(g) is the canonical

generator of R-Gr.
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